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Encoder-Decoder Paradigm 
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I like singing and dancing

我 喜欢 唱歌 和 跳舞

2. Decoding

1. Encoding

Decoder

Encoder
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• Now already trained a model  
• Decoding/Generation: Given an input sentence x, to generate 

the target sentence y that maximize the probability  

•  

• Two types of error 
– the most probable translation is bad → fix the model 
– search does not find the most probably translation → fix the search 

• Most probable translation is not necessary the highest BLEU 
one!

θ

P(y |x; θ)
argmax

y
P(y |x) = fθ(x, y)

Inference
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Autoregressive Generation
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But, this is not necessary the best

greedy decoding: output the token with max next token prob 
argmax

yt

P(yt |x, y1:t−1)



 

• naive solution: exhaustive search 
– too expensive 

• Beam search 
– (approximate) dynamic programming

argmax
y

P(y |x) = fθ(x, y)

Sequence Decoding
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1. start with empty S 

2. at each step, keep k best partial sequences 

3. expand them with one more forward generation 

4. collect new partial results and keep top-k

Beam Search
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Beam Search
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best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length: 
  new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:
      prob = all -inf 
      prob[EOS] = 0
    else: 

      prob = using model to take candidate and compute next token probabilities (logp)
    pick top k scores from prob, and their index 
    for each score, index in the top-k of prob:
      new_candidate = candidate.append(index)
      new_score = s + score
      if not new_seqs.full():
        add (new_candidate, new_score) to new_seqs
      else:
        if new_seqs.queue[0][1] < new_score:

Beam Search (pseudocode)
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• Relative threshold pruning 
– prune candidates with too low score from the top one 
– Given a pruning threshold rp and an active candidate list C, a 

candidate cand ∈ C is discarded if: score(cand) ≤ rp ∗ 
max{score(c)}  

• Absolute threshold pruning: 
– score(cand) ≤ max{score(c)} − ap  

• Relative local threshold pruning

Pruning for Beam Search

10Freitag & Al-Onaizan. Beam Search Strategies for Neural Machine Translation. 2017.



• 3 to 5 
• Why not larger? 

– larger does not necessarily produce higher BLEU

What is Beam size?
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Larger Beam -> Shorter Translation



• Length normalization:  
• Word-reward: promoting longer sentences 

–  
• Bounded word reward with length prediction 

–  

–

When to stop? Normalization of Score

13
Yang et al. Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping Criteria for Neural 

Machine Translation. 2018



Diverse Beam Search and Reranking



• Top k results from NMT decoding are very similar 
• Same for other text generation tasks 
• Need more diversity?  

– e.g. in image-captioning, diverse candidates are desired

Diverse Beam Search
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• Two approaches 

– MMI: maximizing mutual information of MI(X, Y) instead of P(Y|X) 

– Maximize the penalized score: log P(Y|X) + distance(Y and existing 
candidates)

How
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• Mutual Information 

 

 

need a separate Language model p(Y) for target language

MI(X, Y) =
p(X, Y)

p(X)p(Y)

arg max log p(Y |X) − λ log p(Y)

Maximize mutual information (MMI)

17
Li et al. A Diversity-Promoting Objective Function for Neural Conversation Models. 2016 



 
• penalized forward decoding 

– p(Y|X) - \gamma rank_y

arg max(1 − λ)log p(Y |X) + λ log p(X |Y)
Maximizing Mutual Information
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• Obtain N-best from beam search 

• Rerank based on:  
– Score(y) = log p(y|x) + λ log p(x|y) +γlogp(y)+ηLT  

• Alternative: learned reranking 
– Lee et al. Discriminative Reranking for Neural Machine Translation. 

2021

Reranking

19



• Instead of  

• Generate samples of translation Y from the distribution P(Y|
X) 

• Q: how to generate samples from a discrete distribution?

argmax
y

P(y |x) = fθ(x, y)
Sampling
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• Sample the first tokens 
• continue beam search for the later 
• why?

Combine Sample and Beam Search

21



• The generated sentence must contain given keywords 
• To generate from 

– Vocabulary 
– Keywords

Lexical Constrained Decoding

22Hokamp et al. Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search. 2017



• The generated sentence must contain given keywords 
• Using finite state machine to represent constraint state. 
• Expand with 

– Vocabulary 
– Constraint keywords

Order-agnostic Constraints

23Andersen et al. Guided Open Vocabulary Image Captioning with Constrained Beam Search. 2017



• Pick the model when converges 
• Model average: 

– instead, using the last 5-10 epoch’s models, and average the 
parameters to get one model 

– This turns out to generalize better than the last one. 
– Why? (over-fit)

Post-training Processing: Model Average
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• Train several separate MT model 
• decode with 
arg max

yt
∑

k

log P(yt |y<t, x; Mk)

Model Ensemble
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• In order to obtain a single model with good performance.  
• Use ensemble model to create pseudo-parallel data 
• Train a single MT model using both original training data 

and pseudo-parallel data. 

Distillation with Ensemble

26



• Bias in decoding: 
– length bias 
– word frequency 
– beam search curse 
– copy noise 
– low domain  

• Decoding with Mode vs. with most “common” one

Minimum Bayes Risk Decoding
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• Minimize risk = maximize average utility 
• Utility: similarity among samples.   
•  

•

S1, S2, …, Sn ∼ P(y |x, θ)

̂y arg max
si

1
n ∑

j

u(si, sj)

Minimum Bayes Risk Decoding

28Muller and Sennrich. Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation. 2021 



Machine Translation using Seq2seq and 
Transformer
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LSTM Seq2Seq w/ Attention
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Performance with Model Ensemble
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• The most widely used benchmark (WMT14 En-De and En-
Fr)

Results on WMT14

32



• num. heads 
• dim of key 
• num layers 
• hid dim 
• ffn dim 
• dropout 
• pos emb

Effectiveness of Choices

33



• 30 ~ 60 encoder 
• 12 decoder 
• dynamic linear combination of layers (DLCL) 

– or. deeply supervised 
– combine output from all layers

Deep Transformer

34

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.
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Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.



• Parallel Decoding (e.g. NAT, GLAT, DAT,…) 
• Low-resource MT 
• Unsupervised MT 
• Multilingual NMT, Zero-shot NMT 
• Speech-to-text translation 

– (Offline) ST 
– Streaming ST

Hot Topics in MT
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• Sequence-to-sequence encoder-decoder framework for 
conditional generation, including Machine Translation 

• Key components in Transformer 
– Positional Embedding (to distinguish tokens at different pos) 
– Multihead attention 
– Residual connection 
– layer norm 

• Sequence Decoding with Beam search

Summary

37



• Pick a 4-line excerpt from a short text (e.g. poem, text message) in English  

• Use Google translate, VolcTrans(translate.volcengine.com), ChatGPT to back-
translate the text via a pivot language, e.g.,   

○ English → Spanish → English 
○ English → L1 → L2 → English, where L1 and L2 are typologically different from English and from 

each other  

• Compare the original text and its English back-translation, and share your 
observations. For example,  

○ What information got lost in the process of translation?  
○ Are there translation errors associated with linguistic properties of pivot languages and with 

linguistic divergences across languages?   
○ Try different pivot languages: can you provide insights about the quality of MT for those language 

pairs?

Class discussion
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http://translate.volcengine.com

