CS11-737 Multilingual NLP Sequence Decoding

- Lei Li
- https://lileicc.github.io/course/11737mnlp23fa/
 - **Carnegie Mellon University** Language Technologies Institute

Encoder-Decoder Paradigm

Transformer

- Now already trained a model θ
- Decoding/Generation: Given an input sentence x, to generate the target sentence y that maximize the probability $P(y | x; \theta)$ • $\operatorname{argmax} P(y \mid x) = f_{\theta}(x, y)$
- Two types of error
- the most probable translation is bad \rightarrow fix the model – search does not find the most probably translation \rightarrow fix the search Most probable translation is not necessary the highest BLEU
- one!

Inference

Autoregressive Generation

greedy decoding: output the token with max next token prob $\operatorname{argmax} P(y_t | x, y_{1,t-1})$ y_t

But, this is not necessary the best

Sequence Decoding

- naive solution: exhaustive search
 - too expensive
- Beam search - (approximate) dynamic programming

 $\operatorname{argmax} P(y \mid x) = f_{\theta}(x, y)$

1. start with empty S

2. at each step, keep k best partial sequences

3. expand them with one more forward generation

4. collect new partial results and keep top-k

Beam Search

Decoder

Beam Search (pseudocode)

```
best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
 new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:
       prob = all - inf
       prob[EOS] = 0
     else:
      prob = using model to take candidate and compute next token probabilities (logp)
    pick top k scores from prob, and their index
    for each score, index in the top-k of prob:
```

new_candidate = candidate.append(index)

 $new_score = s + score$

if not new_seqs.full():

add (new_candidate, new_score) to new_seqs else:

if new_seqs.queue[0][1] < new_score:</pre>

- Relative threshold pruning
 - prune candidates with too low score from the top one - Given a pruning threshold rp and an active candidate list C, a candidate cand \in C is discarded if: score(cand) \leq rp *
 - max{score(c)}
- Absolute threshold pruning: - score(cand) \leq max{score(c)} - ap
- Relative local threshold pruning

Pruning for Beam Search

Freitag & Al-Onaizan. Beam Search Strategies for Neural Machine Translation. 2017.

What is Beam size?

• 3 to 5

• Why not larger?

– larger does not necessarily produce higher BLEU

11

Larger Beam -> Shorter Translation

When to stop? Normalization of Score

- Length normalization:
- Word-reward: promoting longer sentences $\hat{S}_{WR}(\mathbf{x}, \mathbf{y}) = S(\mathbf{x}, \mathbf{y}) + r \cdot |\mathbf{y}|$
- Bounded word reward with length prediction $L_{pred}(\mathbf{x}) = gr^*(\mathbf{x}) \cdot |\mathbf{x}|$

 $L^*(\mathbf{x}, \mathbf{y}) = \min\{|\mathbf{y}|, L_{pred}(\mathbf{x})\}$ $\hat{S}_{\text{BWR}^*}(\mathbf{x}, \mathbf{y}) = S(\mathbf{x}, \mathbf{y}) + r \cdot L^*(\mathbf{x}, \mathbf{y})$

Yang et al. Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping Criteria for Neural Machine Translation. 2018

 $\hat{S}_{\text{length_norm}}(\mathbf{x}, \mathbf{y}) = S(\mathbf{x}, \mathbf{y}) / |\mathbf{y}|$

Diverse Beam Search and Reranking

Diverse Beam Search

- Top k results from NMT decoding are very similar
- Same for other text generation tasks
- Need more diversity?
 - e.g. in image-captioning, diverse candidates are desired

it and some bottles	A table that has a bunch of bowls on it and some bottles A table that has a bunch of bowls on it A table that has a bunch of food on it A table that has a bunch of bottles on it A table that has a bunch of plates on it A table that has a bunch of flowers on it
t and a window on it lowers ruit on it	A table with a vase of flowers on it A table with a vase of flowers on it and a window A table that has some food on it A table that has some pots and pans on it An empty kitchen table with a vase of flowers An empty kitchen table with a bowl of fruit on it

• Two approaches

- candidates)

- MMI: maximizing mutual information of MI(X, Y) instead of P(Y|X)

- Maximize the penalized score: $\log P(Y|X) + distance(Y and existing)$

Maximize mutual information (MMI)

Mutual Information

need a separate Language model p(Y) for target language

Li et al. A Diversity-Promoting Objective Function for Neural Conversation Models. 2016

 $MI(X, Y) = \frac{p(X, Y)}{p(X)p(Y)}$ $\arg \max \log p(Y|X) - \lambda \log p(Y)$

17

Maximizing Mutual Information $\arg \max(1 - \lambda)\log p(Y|X) + \lambda \log p(X|Y)$ penalized forward decoding $- p(Y|X) - \lg rank_y$

Standard Beam Search

 $\hat{S}(Y_{t-1}^k, y_t^{k,k'} | x) = S(Y_{t-1}^k, y_t^{k,k'} | x) - \gamma k'$

Diversity Promoting Beam Search (γ set to 1)

Reranking

Obtain N-best from beam search

- Rerank based on: - Score(y) = log p(y|x) + λ log p(x|y) + γ logp(y)+ η LT
- Alternative: learned reranking 2021

- Lee et al. Discriminative Reranking for Neural Machine Translation.

Instead of argmax $P(y | x) = f_{\theta}(x, y)$

- X)

• Generate samples of translation Y from the distribution P(Y)

• Q: how to generate samples from a discrete distribution?

Combine Sample and Beam Search

- Sample the first tokens
- continue beam search for the later
- why?

Lexical Constrained Decoding

- The generated sentence must contain given keywords
- To generate from
 - Vocabulary
 - Keywords

Input: Rights protection should begin before their departure.

Hokamp et al. Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search. 2017

e	

22

Order-agnostic Constraints

- The generated sentence must contain given keywords
- Using finite state machine to represent constraint state.
- Expand with
 - Vocabulary
 - Constraint keywords

Andersen et al. Guided Open Vocabulary Image Captioning with Constrained Beam Search. 2017

ust contain given keywords to represent constraint state.

23

Post-training Processing: Model Average

- Pick the model when converges
- Model average:
 - instead, using the last 5-10 epoch's models, and average the parameters to get one model
 - This turns out to generalize better than the last one.
 - Why? (over-fit)

Model Ensemble

• Train several separate MT model decode with $\underset{y_t}{\operatorname{arg\,max}} \sum_{\substack{y_t \\ k}} \log P(y_t | y_{< t}, x; M_k)$

Distillation with Ensemble

- Use ensemble model to create pseudo-parallel data
- and pseudo-parallel data.

• In order to obtain a single model with good performance. • Train a single MT model using both original training data

Minimum Bayes Risk Decoding

- Bias in decoding:
 - length bias
 - word frequency
 - beam search curse
 - copy noise
 - low domain
- Decoding with Mode vs. with most "common" one

Minimum Bayes Risk Decoding

 Minimize risk = maximize average utility • Utility: similarity among samples. • $S_1, S_2, \ldots, S_n \sim P(y \mid x, \theta)$ $\hat{y} \arg \max_{s_i} \frac{1}{n} \sum_{j} u(s_i, s_j)$

Muller and Sennrich. Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation. 2021

Machine Translation using Seq2seq and Transformer

Translation. 2015

Performance with Model Ensemble

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

Fr)

Madal	BL	EU	Training Co	Training Cost (FLOPs)			
widdei	EN-DE	EN-FR	EN-DE	EN-FR			
ByteNet [15]	23.75						
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$			
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$			
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$			
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$			
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0\cdot10^{20}$			
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$			
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$			
Transformer (base model)	27.3	38.1	3.3 •	10 ¹⁸			
Transformer (big)	28.4	41.0	$2.3 \cdot$	10^{19}			

Results on WMT14

The most widely used benchmark (WMT14 En-De and En-

Effectiveness of Choices

num. heads
dim of key
num layers
hid dim
ffn dim
dropout
pos emb

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params $\times 10^{6}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(\mathbf{A})				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(В)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids							4.92	25.7			
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Deep Transformer

- 30 ~ 60 encoder
- 12 decoder
- dynamic linear combination of layers (DLCL)
 - or. deeply supervised
 - combine output from all layers

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Model		Param.	Batch	Updates	† Times	BLEU	Δ
			(×4096)	(×100k)			
Vasw	vani et al. (2017) (Base)	65M	1	1	reference	27.3	-
Bapna et	al. (2018)-deep (Base, 16L)	137M	-	-	-	28.0	-
Vasv	vani et al. (2017) (Big)	$2\overline{1}\overline{3}\overline{M}$	1	3	$\overline{3x}$	28.4	
Che	en et al. (2018a) (Big)	379M	16	[†] 0.075	1.2x	28.5	-
Н	e et al. (2018) (Big)	†210M	1	-	-	29.0	-
Sh	aw et al. (2018) (Big)	[†] 210M	1	3	3x	29.2	-
De	ou et al. (2018) (Big)	356M	1	-	-	29.2	-
0	Ott et al. (2018) (Big)		14	0.25	3.5x	29.3	-
	Transformer (Base)	62M	1	1	1x	27.5	reference
	Transformer (Big)	211M	1	3	3x	28.8	+1.3
post-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1x	failed	failed
	DLCL (Base)	$\overline{62M}$	1	1	1 x	$\bar{27.6}$	+0.1
	DLCL-deep (Base, 25L)	121M	2	0.5	1x	29.2	+1.7
	Transformer (Base)	62M	1	1	1x	27.1	reference
	Transformer (Big)	211M	1	3	3x	28.7	+1.6
pre-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1 x	28.9	+1.8
	DLCL (Base)	$\overline{62M}$	1	1	1 x	$\bar{27.3}$	$-\bar{+0.2}^{-}$
	DLCL-deep (Base, 30L)	137M	2	0.5	1x	29.3	+2.2

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Hot Topics in MT

- Parallel Decoding (e.g. NAT, GLAT, DAT, ...)
- Low-resource MT
- Unsupervised MT
- Multilingual NMT, Zero-shot NMT
- Speech-to-text translation
 - (Offline) ST
 - Streaming ST

Summary

- Sequence-to-sequence encoder-decoder framework for conditional generation, including Machine Translation
- Key components in Transformer
 - Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - layer norm
- Sequence Decoding with Beam search

Class discussion

- Pick a 4-line excerpt from a short text (e.g. poem, text message) in English
- Use Google translate, VolcTrans(<u>translate.volcengine.com</u>), ChatGPT to backtranslate the text via a pivot language, e.g.,
 - \circ English \rightarrow Spanish \rightarrow English
 - English → L1 → L2 → English, where L1 and L2 are typologically different from English and from each other
- Compare the original text and its English back-translation, and share your observations. For example,
 - What information got lost in the process of translation?
 - Are there translation errors associated with linguistic properties of pivot languages and with linguistic divergences across languages?
 - Try different pivot languages: can you provide insights about the quality of MT for those language pairs?

