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Sequence to sequence Learning
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Encoder-Decoder Paradigm 
A generic formulation 

for many tasks

pθ(y |x) = ∏
i

p(yi |x, y1:i−1)

conditional prob. modeled 
by neural networks 

Decoder

Encoder

Source: 我喜欢唱歌和跳舞。

target:    
I like singing and dancing.
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Encoder-Decoder Paradigm

我喜欢唱歌和跳舞。 I like singing and dancing.

A giraffe standing next to forest

“Alexa, turn off the lights”

Graduate student reading 
papers on beach

Machine Translation

Image Captioning

Automatic Speech Recognition

Text-to-Image Generation



• Machine translation as directly learning a function mapping from source 
sequence to target sequence 

 

 or  or  

pθ(y |x) = ∏
t

p(yt |x, y1:t−1; θ)

ht = RNNθ(x, y1:t−1) LSTMθ(x, y1:t−1) GRUθ(x, y1:t−1)
p(yt |x, y1:t−1; θ) = Softmax(W ⋅ ht + b)

Sequence To Sequence (Seq2seq)

5Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014
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• Replace cell with more advanced one 
• Adaptively memorize short and long term information

Long-Short Term Memory (LSTM)
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𝑖𝑡+1 = 𝜎(𝑀𝑖𝑥𝑥𝑡+1 + 𝑀𝑖hh𝑡 + 𝑏𝑖)

𝑜𝑡+1 = 𝜎(𝑀𝑜𝑥𝑥𝑡+1 + 𝑀𝑜hh𝑡 + 𝑏𝑜)

𝑐𝑡+1 = 𝒇𝒕+𝟏 ⊗ 𝒄𝒕 + 𝑖𝑡+1 ⊗ 𝑎𝑡+1

𝑎𝑡+1 = tanh(𝑀𝑐𝑥𝑥𝑡+1 + 𝑀𝑐hh𝑡 + 𝑏𝑎)

h𝑡+1 = 𝑜𝑡+1 ⊗ tanh(𝑐𝑡+1)

𝑓𝑡+1 = 𝜎(𝑀𝑓𝑥𝑥𝑡+1 + 𝑀𝑓hh𝑡 + 𝑏𝑓)

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997
Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000
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• Adaptively memorize short and long term information 
• like LSTM, but fewer parameters

Gated Recurrent Unit (GRU)
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𝑧𝑡+1

𝑟𝑡+1

h𝑡

𝑥𝑡+1 h𝑡+1

h𝑡
𝑥𝑡+1

Update Gate

Reset Gate

h𝑡

~h𝑡+1

𝑧𝑡+11−

𝑧𝑡+1

Input:  
Memory: 

𝑥𝑡

h𝑡

𝑟𝑡+1 = 𝜎(𝑀𝑟𝑥𝑥𝑡+1 + 𝑀𝑟hh𝑡 + 𝑏𝑟)

~h𝑡+1 = tanh(𝑀h𝑥𝑥𝑡+1 + 𝑀hh(𝑟𝑡+1 ⊗ h𝑡) + 𝑏h)

h𝑡+1 = 𝑧𝑡+1 ⊗ ~h𝑡+1 + (𝟏 − 𝒛𝒕+𝟏) ⊗ 𝒉𝒕

𝑧𝑡+1 = 𝜎(𝑀𝑧𝑥𝑥𝑡+1 + 𝑀𝑧hh𝑡 + 𝑏𝑧)

h𝑡𝑥𝑡+1

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. 2014



• Embeddings are tied for decoder (decoder input and 
output share the same embedding matrix W) 

p(yt |x, y1:t−1; θ) = Softmax(W ⋅ ht + b)

Input Embedding and Output Embedding

8Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014
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Seq2seq Training

9Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014
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Training loss: Cross-Entropy 
 

Teacher-forcing during training. (pretend to know 
groundtruth for prefix)

argmin l = − ∑
n

∑
t

log pθ(xn, yn,1, …, yn,t−1)



• More layers of LSTM
Stacked LSTM for seq-2-seq
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• No full context (only one-side) 
– Bidirectional LSTM encoder could alleviate 
– But still no long context 

• Sequential computation in nature (encoder) 
– not possible to parallelize the computation 

• Vanishing gradient

Limitation of RNN/LSTM

11

h1 h2 h3 h4

ea eb ec ed _ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder:  LSTMSource: 天  ⽓ 很  好

target:    
The weather is   nice



Transformer



• Full context and parallel: use Attention in both encoder and 
decoder 

• no recurrent

Motivation for New Network Architecture
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Decoder

Encoder

Source: 我喜欢唱歌和跳舞。

target:    
I like singing and dancing.



A context vector c represents the related source context for 
current predicting word.  

 

 

 
The probability of word y_i is computed as:  

αmj = Softmax(D(gm, h1…n)) =
exp(D(gm, hj))

∑k exp(D(gm, hk)
cm = ∑

j

αmjhj

D(gm, hj) = gm ⋅ hj

p(ym) = Softmax(W ⋅ [gm
cm] + b)
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Attention

y

0.6 0.2 0.1 0.1

context 
vector c

g1天

x1

⽓

x2

真

x3

好

x4

!

x5

Each output token depends on input tokens differently

Neural Machine Translation by Jointly Learning to Align and Translate, Dzmitry 
Bahdanau, Kyunghyun Cho, Yoshua Bengio, 2015.

https://arxiv.org/search/cs?searchtype=author&query=Bahdanau%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Bahdanau%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Cho%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Bengio%2C+Y
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<BOS> I like

I like sing

Encoder Decoder

MHA + FFN

MHA 
+FFN

MHA + 
FFN

MHA + 
FFN

MHA + 
FFN

MHA + 
FFN

MHA + 
FFN

MHA + 
FFN

MHA + 
FFN

MHA + 
FFN

Softmax Softmax Softmax

I like singing and dancing.

Token 
Embedding 

Table

我 ⼀和 …

MHA + FFN

Token 
Embedding 

Table

I like you…

Transformer

我 喜 欢 唱 歌 和 跳 舞 。
Vaswani et al. Attention is All You Need. 2017
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MultiHead Attention And Feed Forward Network

VxKxQx

Dot Product

Softmax
Linear

LayerNorm
yi = wi

xi − μ(x)
σ(x)

+ bi

+ Linear

ReLU

Linear

LayerNorm

+MHA FFN

(Qx)T × Kx/ dk

Attention(Q, K, V, x) = Softmax(
(Qx)TKx

d
) ⋅ (Vx)T

FFN(x) = max(0,x ⋅ W1 + b1) ⋅ W2 + b2



• Instead of one vector for each token 
• break into multiple heads 
• each head perform attention  

 Headi = Attention(QWQ
i , KWK

i , VWV
i )

MultiHead(Q, K, V) = Concat(Head1, Head2, …, Headh)Wo

Multi-head Attention

17Q

Scaled Dot-Product 
Attention

Linear Linear LinearLinear Linear Linear

Concat

Linear

h

K V

Multi-Head 



• Maskout right side before softmax (-inf)
Self-Attention for Decoder
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MatMul

Scale

Mask (opt.)

SoftMax

MatMul

Q K V

Scaled Dot-Product 



• C layers of encoder (=6) 
• D layers of decoder (=6) 
• Token Embedding: 512 (base), 1024 (large) 
• FFN dim=2048

Transformer in Original Paper
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Multi-Head 
Attention

Add & Norm

Input 
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Inputs

Feed Forward

Add & Norm

Output 
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.
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Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm
Masked 

Multi-Head 
Attention

Linear

Softmax

Output 

Output

MatMul

Scale

Mask (opt.)

SoftMax

MatMul
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Scaled Dot-Product 

Q

Scaled Dot-Product 
Attention

Linear Linear LinearLinear Linear Linear

Concat
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h

K V

Multi-Head 



• Token Embedding:  
– Shared (tied) input and output embedding 

• Positional Embedding:  
– to distinguish words in different position, Map position labels to 

embedding, dimension is same as Tok Emb 

 PEpos,2i = sin(
pos

10002i/d
)

PEpos,2i+1 = cos(
pos

10002i/d
)

Embedding

20
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Transformer

Vaswani et al. Attention is All You Need. 2017

Encode

<BOS> y1 y2

y1 y2 y3

Encoder
Beam 
Search

Decoder

Feed 
Add & 

Multi-Head 
Attention

Add & 

Add & 

Masked 
Multi-Head 

Encode EncodeEncode

Encode Encode EncodeEncode

Tok Tok Tok Tok 

Decod Decod Decod

Decod Decod Decod

Decod Decod Decod

Softma Softma Softma

我  喜  欢  唱 歌 和 跳  舞 。

I like singing and dancing.

0 1 32

+ + + +

Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm



•  
• Training loss: Cross-Entropy 

•
 

• Teacher-forcing during training. 
• (pretend to know groundtruth for prefix)

P(Y |X) = ∏P(yt |y<t, x)

l = − ∑
n

∑
t

log fθ(xn, yn,1, …, yn,t−1)

Training Loss (same as Seq2seq)

22

Decoder

Encoder

Source: 我喜欢唱歌和跳舞。

target:    
I like singing and dancing.



• Dropout 
– Applied to before residual 
– and to embedding, pos emb. 
– p=0.1 ~ 0.3 

• Label smoothing 
– 0.1 probability assigned to non-truth 

• Vocabulary:  
– En-De: 37K using BPE 
– En-Fr: 32k word-piece (similar to BPE)

Training

23



• Assume            is the one-hot encoding of label 

• Approximating 0/1 values with softmax is hard 
• The smoothed version 

– Commonly use 

Label Smoothing
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y ∈ ℝn

yi = {1 if belongs to class i
0 otherwise

yi = {1 − ϵ if belongs to class i
ϵ/(n − 1) otherwise

ϵ = 0.1



• Batch 
– group by approximate sentence length 
– still need shuffling  

• Hardware  
– one machine with 8 GPUs (in 2017 paper) 
– base model: 100k steps (12 hours) 
– large model: 300k steps (3.5 days) 

• Adam Optimizer 
– increase learning rate during warmup, then decrease 

η =
1

d
min(

1

t
,

t

t3
0

)

Training

25



 
 

 

 

mt+1 = β1mt − (1 − β1)∇ℓ(xt)
vt+1 = β2vt + (1 − β2)(∇ℓ(xt))2

m̂t+1 =
mt+1

1 − βt+1
1

̂vt+1 =
vt+1

1 − βt+1
2

xt+1 = xt −
η

̂vt+1 + ϵ
m̂t+1

ADAM

26



• A single model obtained by averaging the last 5 
checkpoints, which were written at 10-minute interval 
(base) 

• decoding length: within source length + 50

Model Average

27



Sequence Decoding
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Autoregressive Generation

Encode Encode EncodeEncode

我  喜  欢  唱  歌 和 跳  舞 。 <BO

Decod

Softma

y1

y1

Decod

Softma

y2

y2

Decod

Softma

y3
I Iike singing

I Iike

<EOS>

But, this is not necessary the best

greedy decoding: output the token with max next token prob



• Now already trained a model  
• Decoding/Generation: Given an input sentence x, to generate 

the target sentence y that maximize the probability  

•  

• Two types of error 
– the most probable translation is bad → fix the model 
– search does not find the most probably translation → fix the search 

• Most probable translation is not necessary the highest BLEU 
one!

θ

P(y |x; θ)
argmax

y
P(y |x) = fθ(x, y)

Inference

30



•  

• naive solution: exhaustive search 
– too expensive 

• Beam search 
– (approximate) dynamic programming

argmax
y

P(y |x) = fθ(x, y)
Decoding

31



• start with empty S  
• at each step, keep k best partial sequences 
• expand them with one more forward generation 
• collect new partial results and keep top-k

Beam Search
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best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length: 
  new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:
      prob = all -inf 
      prob[EOS] = 0
    else: 

      prob = using model to take candidate and compute next token probabilities (logp)
    pick top k scores from prob, and their index 
    for each score, index in the top-k of prob:
      new_candidate = candidate.append(index)
      new_score = s + score
      if not new_seqs.full():
        add (new_candidate, new_score) to new_seqs
      else:
        if new_seqs.queue[0][1] < new_score:

Beam Search (pseudocode)
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Beam Search

<BOS>

I 0.4

We 0.3

He 0.1

She 0.1

They 0.01

like 0.4
love 0.4
am 0.1
hate 0.01
want 0.01

I 0.4 
We 0.3

like 0.4
do 0.3
are 0.2
can 0.01
say 0.01

I like 0.16 

I love 0.16

We like 0.12 

We do 0.09

I like 0.16 
I love 0.16

singing 0.6

song 0.2

shouting 0.01

going 0.01

dancing 0.01

singing 0.5
dancing 0.3
you 0.11
going 0.01
it 0.01

I like singing 0.096 

I like song 0.032

I love singing 0.08 

I love dancing 0.048

forward by 
network top-k

forward by 
network

forward by 
network

top-k

forward by 
network

forward by 
network

top-k



Machine Translation using Seq2seq and 
Transformer
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LSTM Seq2Seq w/ Attention
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WMT14
Jean et al. On Using Very Large Target Vocabulary for Neural Machine 

Translation. 2015



37

Performance with Model Ensemble
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Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015



• The most widely used benchmark (WMT14 En-De and En-
Fr)

Results on WMT14
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• num. heads 
• dim of key 
• num layers 
• hid dim 
• ffn dim 
• dropout 
• pos emb

Effectiveness of Choices

39



• 30 ~ 60 encoder 
• 12 decoder 
• dynamic linear combination of layers (DLCL) 

– or. deeply supervised 
– combine output from all layers

Deep Transformer
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Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.
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Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.



• Parallel Decoding (e.g. NAT, GLAT, DAT,…) 
• Low-resource MT 
• Unsupervised MT 
• Multilingual NMT, Zero-shot NMT 
• Speech-to-text translation 

– (Offline) ST 
– Streaming ST

Hot Topics in MT

42



• Sequence-to-sequence encoder-decoder framework for 
conditional generation, including Machine Translation 

• Key components in Transformer 
– Positional Embedding (to distinguish tokens at different pos) 
– Multihead attention 
– Residual connection 
– layer norm

Summary

43



• There will be no graded discussion, but we'll have a code 
walk through The Annotated Transformer 
https://nlp.seas.harvard.edu/2018/04/03/attention.html 

• Organize into group to discuss some of the design 
decisions, their motivation, etc.

Code Walk
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https://nlp.seas.harvard.edu/2018/04/03/attention.html

