CS11-737 Multilingual NLP
 Neural Machine Translation Models
 Lei Li
 https://lileicc.github.io/course/11737mnlp23fa/

Carnegie Mellon University
Language Technologies Institute

Sequence to sequence Learning

Encoder－Decoder Paradigm

A generic formulation
target：
I like singing and dancing．
 for many tasks

Source：我喜欢唱歌和跳舞。

$$
\begin{aligned}
& \begin{array}{c}
p_{\theta}(y \mid x)=\prod_{i} \frac{p\left(y_{i} \mid x, y_{1: i-1}\right)}{\mid} \\
\text { conditional prob. modeled }
\end{array} \\
& \text { by neural networks }
\end{aligned}
$$

Encoder－Decoder Paradigm

我喜欢唱歌和跳舞。 $\xrightarrow{\text { Machine Translation }} 1$ like singing and dancing．

$\xrightarrow{\text { Image Captioning }}$ A giraffe standing next to forest

Automatic Speech Recognition \longrightarrow＂Alexa，turn off the lights＂

Graduate student readingText－to－Image Generation papers on beach

Sequence To Sequence (Seq2seq)

- Machine translation as directly learning a function mapping from source sequence to target sequence

$$
\begin{gathered}
p_{\theta}(y \mid x)=\prod_{t} p\left(y_{t} \mid x, y_{1: t-1} ; \theta\right) \\
h_{t}=\operatorname{RNN}_{\theta}\left(x, y_{1: t-1}\right) \text { or } \operatorname{LSTM}_{\theta}\left(x, y_{1: t-1}\right) \text { or } \operatorname{GRU}_{\theta}\left(x, y_{1: t-1}\right) \\
p\left(y_{t} \mid x, y_{1: t-1} ; \theta\right)=\operatorname{Softmax}\left(W \cdot h_{t}+b\right)
\end{gathered}
$$

Encoder

Long-Short Term Memory (LSTM)

- Replace cell with more advanced one
- Adaptively memorize short and long term information

$$
\begin{aligned}
& i_{t+1}=\sigma\left(M_{i x} x_{t+1}+M_{i h} h_{t}+b_{i}\right) \\
& f_{t+1}=\sigma\left(M_{f x} x_{t+1}+M_{f h} h_{t}+b_{f}\right) \\
& o_{t+1}=\sigma\left(M_{o x} x_{t+1}+M_{o h} h_{t}+b_{o}\right) \\
& a_{t+1}=\tanh \left(M_{c x} x_{t+1}+M_{c h} h_{t}+b_{a}\right) \\
& \\
& c_{t+1}=f_{t+1} \otimes c_{t}+i_{t+1} \otimes a_{t+1} \\
& h_{t+1}=o_{t+1} \otimes \tanh \left(c_{t+1}\right)
\end{aligned}
$$

Gated Recurrent Unit (GRU)

- Adaptively memorize short and long term information
- like LSTM, but fewer parameters

Input Embedding and Output Embedding

- Embeddings are tied for decoder (decoder input and output share the same embedding matrix W)

$$
p\left(y_{t} \mid x, y_{1: t-1} ; \theta\right)=\operatorname{Softmax}\left(W \cdot h_{t}+b\right)
$$

Seq2seq Training

Training loss: Cross-Entropy

$$
\operatorname{argmin} l=-\sum_{n} \sum_{t} \log p_{\theta}\left(x_{n}, y_{n, 1}, \ldots, y_{n, t-1}\right)
$$

Teacher-forcing during training. (pretend to know groundtruth for prefix) Encoder

Decoder

Stacked LSTM for seq-2-seq

- More layers of LSTM

Limitation of RNN/LSTM

- No full context (only one-side)
- Bidirectional LSTM encoder could alleviate
- But still no long context
- Sequential computation in nature (encoder)
- not possible to parallelize the computation
- Vanishing gradient

Transformer

Motivation for New Network Architecture

－Full context and parallel：use Attention in both encoder and decoder
－no recurrent
target：
I like singing and dancing．

Source：我喜欢唱歌和跳舞。

Attention

Each output token depends on input tokens differently

A context vector c represents the related source context for current predicting word.

$$
\begin{aligned}
& \alpha_{m j}=\operatorname{Softmax}\left(D\left(g_{m}, h_{1 \ldots n}\right)\right)=\frac{\exp \left(D\left(g_{m}, h_{j}\right)\right)}{\sum_{k} \exp \left(D\left(g_{m}, h_{k}\right)\right.} \\
& c_{m}=\sum_{j} \alpha_{m j} h_{j} \\
& D\left(g_{m}, \stackrel{h_{j}}{j}\right)=g_{m} \cdot h_{j}
\end{aligned}
$$

The probability of word y _i is computed as:
$p\left(y_{m}\right)=\operatorname{Softmax}\left(W \cdot\left[\begin{array}{l}g_{m} \\ c_{m}\end{array}\right]+b\right)$

Transformer

MultiHead Attention And Feed Forward Network

 $\operatorname{Attention}(Q, K, V, x)=\operatorname{Softmax}\left(\frac{(Q x)^{T} K x}{\sqrt{d}}\right) \cdot(V x)^{T}$ $\operatorname{FFN}(x)=\max \left(0, x \cdot W_{1}+b_{1}\right) \cdot W_{2}+b_{2}$

Multi-head Attention

- Instead of one vector for each token
- break into multiple heads
- each head perform attention
$\operatorname{Head}_{i}=\operatorname{Attention}\left(Q W_{i}^{Q}, K W_{i}^{K}, V W_{i}^{V}\right)$
$\operatorname{MultiHead}(Q, K, V)=\operatorname{Concat}\left(\operatorname{Head}_{1}, \operatorname{Head}_{2}, \ldots, \operatorname{Head}_{h}\right) W^{o}$

Self-Attention for Decoder

- Maskout right side before softmax (-inf)

Transformer in Original Paper

- C layers of encoder (=6)
- D layers of decoder (=6)
- Token Embedding: 512 (base), 1024 (large)
- FFN dim=2048

Embedding

- Token Embedding:
- Shared (tied) input and output embedding
- Positional Embedding:
- to distinguish words in different position, Map position labels to embedding, dimension is same as Tok Emb
$P E_{p o s, 2 i}=\sin \left(\frac{p o s}{1000^{2 i / d}}\right)$
$P E_{p o s, 2 i+1}=\cos \left(\frac{p o s}{1000^{2 i / d}}\right)$

Transformer

Training Loss（same as Seq2seq）

－$P(Y \mid X)=\prod P\left(y_{t} \mid y_{<t}, x\right)$
－Training loss：Cross－Entropy
－$l=-\sum_{n} \sum_{t} \log f_{\theta}\left(x_{n}, y_{n, 1}, \ldots, y_{n, t-1}\right)$
－Teacher－forcing during training．
－（pretend to know groundtruth for prefix）

target：
I like singing and dancin

Training

- Dropout
- Applied to before residual
- and to embedding, pos emb.
- $\mathrm{p}=0.1$ ~ 0.3
- Label smoothing
- 0.1 probability assigned to non-truth
- Vocabulary:
- En-De: 37K using BPE
- En-Fr: 32k word-piece (similar to BPE)

Label Smoothing

- Assume $\mathbf{y} \in \mathbb{R}^{n}$ is the one-hot encoding of label

$$
y_{i}= \begin{cases}1 & \text { if belongs to class } i \\ 0 & \text { otherwise }\end{cases}
$$

- Approximating $0 / 1$ values with softmax is hard
- The smoothed version

$$
y_{i}= \begin{cases}1-\epsilon & \text { if belongs to class } i \\ \epsilon /(n-1) & \text { otherwise }\end{cases}
$$

- Commonly use

$$
\epsilon=0.1
$$

Training

- Batch
- group by approximate sentence length
- still need shuffling
- Hardware
- one machine with 8 GPUs (in 2017 paper)
- base model: 100k steps (12 hours)
- large model: 300k steps (3.5 days)
- Adam Optimizer
- increase learning rate during warmup, then decrease
$\eta=\frac{1}{\sqrt{d}} \min \left(\frac{1}{\sqrt{t}}, \frac{t}{\sqrt{t_{0}^{3}}}\right)$

ADAM

$$
\begin{aligned}
& m_{t+1}=\beta_{1} m_{t}-\left(1-\beta_{1}\right) \nabla \ell\left(x_{t}\right) \\
& v_{t+1}=\beta_{2} v_{t}+\left(1-\beta_{2}\right)\left(\nabla \ell\left(x_{t}\right)\right)^{2} \\
& \hat{m}_{t+1}=\frac{m_{t+1}}{1-\beta_{1}^{t+1}} \\
& \hat{v}_{t+1}=\frac{v_{t+1}}{1-\beta_{2}^{t+1}} \\
& x_{t+1}=x_{t}-\frac{\eta}{\sqrt{\hat{v}_{t+1}}+\epsilon} \hat{m}_{t+1}
\end{aligned}
$$

Model Average

- A single model obtained by averaging the last 5 checkpoints, which were written at 10-minute interval (base)
- decoding length: within source length +50

Sequence Decoding

Autoregressive Generation

greedy decoding: output the token with max next token prob

But, this is not necessary the best

Inference

- Now already trained a model θ
- Decoding/Generation: Given an input sentence x, to generate the target sentence y that maximize the probability $P(y \mid x ; \theta)$
$-\operatorname{argmax} P(y \mid x)=f_{\theta}(x, y)$
y
- Two types of error
- the most probable translation is bad \rightarrow fix the model
- search does not find the most probably translation \rightarrow fix the search
- Most probable translation is not necessary the highest BLEU one!

Decoding

- $\operatorname{argmax} P(y \mid x)=f_{\theta}(x, y)$

y

- naive solution: exhaustive search
- too expensive
- Beam search
- (approximate) dynamic programming

Beam Search

- start with empty S
- at each step, keep k best partial sequences
- expand them with one more forward generation
- collect new partial results and keep top-k

Beam Search (pseudocode)

```
best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
    new_seqs = PriorityQueue()
    for (candidate, s) in best_scores:
        if candidate[-1] is EOS:
            prob = all -inf
            prob[EOS] = 0
            else:
            prob = using model to take candidate and compute next token probabilities (logp)
        pick top k scores from prob, and their index
        for each score, index in the top-k of prob:
            new_candidate = candidate.append(index)
            new_score = s + score
            if not new_seqs.full():
            add (new_candidate, new_score) to new_seqs
            else:
                if new_seqs.queue[0][1] < new_score:
```


Beam Search

Machine Translation using Seq2seq and Transformer

LSTM Seq2Seq w/ Attention

Jean et al. On Using Very Large Target Vocabulary for Neural Machine
Translation. 2015

Performance with Model Ensemble

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

Results on WMT14

- The most widely used benchmark (WMT14 En-De and EnFr)

Model	BLEU			Training Cost (FLOPs)	
	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92		$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [8]	25.16	40.46		$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56		$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4			$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16		$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	$\mathbf{4 1 . 2 9}$		$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1		$\mathbf{3 . 3} \cdot \mathbf{1 0}^{\mathbf{1 8}}$	
Transformer (big)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 0}$		$2.3 \cdot 10^{19}$	

Effectiveness of Choices

- num. heads
- dim of key
- num layers
- hid dim
- ffn dim
- dropout
- pos emb

	N	$d_{\text {model }}$	$d_{\text {ff }}$	h	d_{k}	d_{v}	$P_{\text {drop }}$	$\epsilon_{l s}$	train steps	$\begin{aligned} & \text { PPL } \\ & \text { (dev) } \end{aligned}$	$\begin{aligned} & \text { BLEU } \\ & (\mathrm{dev}) \end{aligned}$	$\begin{gathered} \text { params } \\ \times 10^{6} \end{gathered}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids									4.92	25.7	
big	6	1024	4096	16			0.3		300 K	4.33	26.4	213

Deep Transformer

- 30 ~ 60 encoder
- 12 decoder
- dynamic linear combination of layers (DLCL)
- or. deeply supervised
- combine output from all layers

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Model		Param.	$\begin{gathered} \text { Batch } \\ (\times 4096) \end{gathered}$	Updates $(\times 100 \mathrm{k})$	${ }^{\dagger}$ Times	BLEU	Δ
Vaswani et al. (2017) (Base)Bapna et al. (2018)-deep (Base, 16L)		65M	1	1	reference	27.3	-
		137M	-	-	-	28.0	-
Vaswani et al. (2017) (-Big)		$2 \overline{1} \overline{3} \bar{M}$	1	3	$\overline{3} \times$	$\overline{28.4}$	-
Chen et al. (2018a) (Big)		379M	16	${ }^{\dagger} 0.075$	1.2 x	28.5	-
He et al. (2018) (Big)		\dagger †10M	1	-	-	29.0	-
Shaw et al. (2018) (Big)		${ }^{\dagger} 210 \mathrm{M}$	1	3	3 x	29.2	-
Dou et al. (2018) (Big)		356M	1	-	-	29.2	-
Ott et al. (2018) (Big)		210M	14	0.25	3.5x	29.3	-
post-norm	Transformer (Base)	62M	1	1	1x	27.5	reference
	Transformer (Big)	211M	1	3	3 x	28.8	+1.3
	Transformer-deep (Base, 20L)	106M	2	0.5	1x	failed	failed
	DLCLC (Base)	$\overline{6} \overline{\mathrm{M}}$	1	1	1x	27.6	+ $\overline{0} . \overline{1}$
	DLCL-deep (Base, 25L)	121 M	2	0.5	1x	29.2	+1.7
pre-norm	Transformer (Base)	62M	1	1	1x	27.1	reference
	Transformer (Big)	211M	1	3	3 x	28.7	+1.6
	Transformer-deep (Base, 20L)	106M	2	0.5	1x	28.9	+1.8
	DLCL $\overline{\text { (Base) }}$	$\overline{6} \overline{\mathrm{M}}$	1	$1-$	1x	$\overline{27.3}$	${ }^{-}+\overline{0} . \overline{2}$
	DLCL-deep (Base, 30L)	137M	2	0.5	1x	29.3	+2.2

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Hot Topics in MT

- Parallel Decoding (e.g. NAT, GLAT, DAT,...)
- Low-resource MT
- Unsupervised MT
- Multilingual NMT, Zero-shot NMT
- Speech-to-text translation
- (Offline) ST
- Streaming ST

Summary

- Sequence-to-sequence encoder-decoder framework for conditional generation, including Machine Translation
- Key components in Transformer
- Positional Embedding (to distinguish tokens at different pos)
- Multihead attention
- Residual connection
- layer norm

Code Walk

- There will be no graded discussion, but we'll have a code walk through The Annotated Transformer https://nlp.seas.harvard.edu/2018/04/03/attention.html
- Organize into group to discuss some of the design decisions, their motivation, etc.

