CS11-737 Multilingual NLP Neural Machine Translation Models

- leili
- https://lileicc.github.io/course/11737mnlp23fa/
 - **Carnegie Mellon University** Language Technologies Institute

Sequence to sequence Learning

Encoder-Decoder Paradigm

Source: 我喜欢唱歌和跳舞。

A generic formulation for many tasks

 $p_{\theta}(y | x) = \prod p(y_i | x, y_{1:i-1})$ conditional prob. modeled by neural networks

Encoder-Decoder Paradigm

Automatic Speech Recognition "Alexa, turn off the lights"

Graduate student reading Text-to-Image Generation papers on beach

我喜欢唱歌和跳舞。 Machine Translation I like singing and dancing.

Image Captioning A giraffe standing next to forest

Sequence To Sequence (Seq2seq)

 Machine translation as directly learning a function mapping from source sequence to target sequence

$$p_{\theta}(y \,|\, x) = \int_{-\infty}^{\infty} p_{\theta}(y \,|\, x) = \int_{-\infty}^{\infty}$$

$$h_t = RNN_{\theta}(x, y_{1:t-1}) \text{ or } LS'_t$$
$$p(y_t | x, y_{1:t-1}; \theta) =$$

Encoder

$$p(y_t | x, y_{1:t-1}; \theta)$$

 $TM_{\theta}(x, y_{1:t-1})$ or $GRU_{\theta}(x, y_{1:t-1})$ $= Softmax(W \cdot h_t + b)$ Decoder

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Long-Short Term Memory (LSTM)

- Replace cell with more advanced one
- Adaptively memorize short and long term information

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997 Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000

anced one and long term information

$$i_{t+1} = \sigma(M_{ix}x_{t+1} + M_{ih}h_t + b_i)$$

$$f_{t+1} = \sigma(M_{fx}x_{t+1} + M_{fh}h_t + b_f)$$

$$o_{t+1} = \sigma(M_{ox}x_{t+1} + M_{oh}h_t + b_o)$$

$$a_{t+1} = \tanh(M_{cx}x_{t+1} + M_{ch}h_t + b_a)$$

$$a_{t+1} = \tanh(M_{cx}x_{t+1} + M_{ch}h_t + b_a)$$

$$h_{t+1} = o_{t+1} \otimes c_t + i_{t+1} \otimes a_{t+1}$$

Gated Recurrent Unit (GRU)

 Adaptively memorize short and long term information • like LSTM, but fewer parameters

> $x_{t+1} h_t$ Reset Gate h_t \tilde{h}_{t+1} h_{t} x_{t+1} Z_{t+1} $1 - Z_{t+1}$ Update Gate z_{t+} $h_t x_{t+1} \qquad h_t$

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. 2014

Input:
$$x_{t}$$

Memory: h_{t}
 $r_{t+1} = \sigma(M_{rx}x_{t+1} + M_{rh}h_{t} + b_{r})$
 $z_{t+1} = \sigma(M_{zx}x_{t+1} + M_{zh}h_{t} + b_{z})$
+1
 $\tilde{h}_{t+1} = \tanh(M_{hx}x_{t+1} + M_{hh}(r_{t+1} \otimes h_{t}) + b_{h})$
 $h_{t+1} = z_{t+1} \otimes \tilde{h}_{t+1} + (1 - z_{t+1}) \otimes h_{t}$

Input Embedding and Output Embedding

- Embeddings are tied for decoder (decoder input and output share the same embedding matrix W)
 - $p(y_t | x, y_{1:t-1}; \theta) = Softmax(W \cdot h_t + b)$

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Training loss: Cross-Entropy argmin $l = -\sum \sum$

Teacher-forcing during training. (pretend to know groundtruth for prefix) Decoder Encoder Target: 我 高功 跳舞

n

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Seq2seq Training

argmin $l = -\sum_{n=1}^{\infty} \log p_{\theta}(x_n, y_{n,1}, ..., y_{n,t-1})$

Stacked LSTM for seq-2-seq

More layers of LSTM

Limitation of RNN/LSTM

- No full context (only one-side)
 - Bidirectional LSTM encoder could alleviate
 - But still no long context
- Sequential computation in nature (encoder) not possible to parallelize the computation
- Vanishing gradient

11

Transformer

Motivation for New Network Architecture

- decoder
- no recurrent

Full context and parallel: use Attention in both encoder and

Each output token depends on input tokens differently

 $p(\mathbf{y}_m) = \mathbf{S}$

Attention

- A context vector c represents the related source context for current predicting word.
- $\alpha_{mj} = \text{Softmax}(D(g_m, h_{1...n})) = \frac{\exp(D(g_m, h_j))}{\sum_k \exp(D(g_m, h_k))}$

$$\alpha_{mj}h_j$$

$$= g_m \cdot h_j$$

bility of word y_i is computed as:
$$oftmax(W \cdot \begin{bmatrix} g_m \\ c_m \end{bmatrix} + b)$$

Neural Machine Translation by Jointly Learning to Align and Translate, Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, 2015.

Transformer

Vaswani et al. Attention is All You Need. 2017

Multi-head Attention

- Instead of one vector for each token
- break into multiple heads

 each head perform attention Head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

MultiHead(Q, K, V) = Concat(Head₁, Head₂, ..., Head_h) W^{o}

Self-Attention for Decoder

Maskout right side before softmax (-inf)

Transformer in Original Paper

- C layers of encoder (=6)
- D layers of decoder (=6)
- Token Embedding: 512 (base), 1024 (large)
- FFN dim=2048

Embedding

- Token Embedding:
 - Shared (tied) input and output embedding
- Positional Embedding:
 - embedding, dimension is same as Tok Emb
- $PE_{pos,2i} = \sin(\frac{pos}{1000^{2i/d}})$ $PE_{pos,2i+1} = \cos(\frac{pos}{1000^{2i/d}})$

- to distinguish words in different position, Map position labels to

Transformer

Vaswani et al. Attention is All You Need. 2017

Training Loss (same as Seq2seq) • $P(Y|X) = \int P(y_t|y_{< t}, x)$ Training loss: Cross-Entropy $l = -\sum \int \log f_{\theta}(x_n, y_{n,1}, ..., y_{n,t-1})$ n t

- Teacher-forcing during training.
- (pretend to know groundtruth for prefix)

• Dropout

- Applied to before residual
- and to embedding, pos emb.
- $p = 0.1 \sim 0.3$
- Label smoothing
 - 0.1 probability assigned to non-truth
- Vocabulary:
 - En-De: 37K using BPE
 - En-Fr: 32k word-piece (similar to BPE)

Training

Label Smoothing

- Assume $y \in \mathbb{R}^n$ is the one-hot encoding of label
- $y_i = \begin{cases} 1 & \text{if belongs to class } i \\ 0 & \text{otherwise} \end{cases}$ Approximating 0/1 values with softmax is hard
- The smoothed version
 - $y_i = \begin{cases} 1 \epsilon & \text{if belongs to class } i \\ \epsilon/(n-1) & \text{otherwise} \end{cases}$
 - Commonly use

 $\epsilon = 0.1$

• Batch

- group by approximate sentence length
- still need shuffling
- Hardware
 - one machine with 8 GPUs (in 2017 paper)
 - base model: 100k steps (12 hours)
 - large model: 300k steps (3.5 days)
- Adam Optimizer
 - increase learning rate during warmup, then decrease

$$\eta = \frac{1}{\sqrt{d}} \min(\frac{1}{\sqrt{t}}, \frac{t}{\sqrt{t_0^3}})$$

Training

$$\begin{split} m_{t+1} &= \beta_1 m_t - (1 - \beta_1) \,\nabla \ell(x_t) \\ v_{t+1} &= \beta_2 v_t + (1 - \beta_2) (\,\nabla \ell(x_t))^2 \\ \hat{m}_{t+1} &= \frac{m_{t+1}}{1 - \beta_1^{t+1}} \\ \hat{v}_{t+1} &= \frac{v_{t+1}}{1 - \beta_2^{t+1}} \\ x_{t+1} &= x_t - \frac{\eta}{\sqrt{\hat{v}_{t+1}} + \epsilon} \hat{m}_{t+1} \end{split}$$

ADAM

- A single model obtained by averaging the last 5 checkpoints, which were written at 10-minute interval (base)
- decoding length: within source length + 50

Sequence Decoding

Autoregressive Generation

greedy decoding: output the token with max next token prob

But, this is not necessary the best

- Now already trained a model θ
- Decoding/Generation: Given an input sentence x, to generate the target sentence y that maximize the probability $P(y | x; \theta)$ • $\operatorname{argmax} P(y \mid x) = f_{\theta}(x, y)$
- Two types of error
- the most probable translation is bad \rightarrow fix the model – search does not find the most probably translation \rightarrow fix the search Most probable translation is not necessary the highest BLEU
- one!

Inference

• $\operatorname{argmax} P(y \mid x) = f_{\theta}(x, y)$

- naive solution: exhaustive search
 - too expensive
- Beam search
 - (approximate) dynamic programming

- start with empty S
- at each step, keep k best partial sequences
- expand them with one more forward generation
- collect new partial results and keep top-k

Beam Search (pseudocode)

```
best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
 new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:
       prob = all - inf
       prob[EOS] = 0
     else:
      prob = using model to take candidate and compute next token probabilities (logp)
    pick top k scores from prob, and their index
    for each score, index in the top-k of prob:
```

new_candidate = candidate.append(index)

 $new_score = s + score$

if not new_seqs.full():

add (new_candidate, new_score) to new_seqs else:

if new_seqs.queue[0][1] < new_score:</pre>

Beam Search

Machine Translation using Seq2seq and Transformer

Translation. 2015

Performance with Model Ensemble

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

Fr)

Madal	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0\cdot10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 •	10 ¹⁸	
Transformer (big)	28.4	41.0	$2.3\cdot 10^{19}$		

Results on WMT14

The most widely used benchmark (WMT14 En-De and En-

Effectiveness of Choices

num. heads
dim of key
num layers
hid dim
ffn dim
dropout
pos emb

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	E1.	train	PPL	BLEU	params
	1	amodel	ω_{Π}		ω_{κ}	u_v	- arop	ϵ_{ls}	steps	(dev)	(dev)	$ imes 10^{6}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(•)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(B)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(\mathbf{D})							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbeda	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16	_		0.3		300K	4.33	26.4	213

Deep Transformer

- 30 ~ 60 encoder
- 12 decoder
- dynamic linear combination of layers (DLCL)
 - or. deeply supervised
 - combine output from all layers

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

	Model	Param.	Batch (×4096)	Updates (×100k)	† Times	BLEU	Δ
Vasw	rani et al. (2017) (Base)	65M	1	1	reference	27.3	-
Bapna et al. (2018)-deep (Base, 16L)		137M	-	-	-	28.0	-
Vasv	vani et al. (2017) (Big)	$\overline{213M}$	1	3	$\overline{3x}$	$\bar{28.4}$	
Che	en et al. (2018a) (Big)	379M	16	[†] 0.075	1.2x	28.5	-
Н	e et al. (2018) (Big)	†210M	1	-	-	29.0	-
Sha	aw et al. (2018) (Big)	[†] 210M	1	3	3x	29.2	-
Dou et al. (2018) (Big)		356M	1	-	-	29.2	-
Ott et al. (2018) (Big)		210M	14	0.25	3.5x	29.3	-
	Transformer (Base)	62M	1	1	1x	27.5	reference
	Transformer (Big)	211M	1	3	3x	28.8	+1.3
post-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1x	failed	failed
	DLCL (Base)	$\overline{62M}$	1	1	$1\mathbf{x}$	$\bar{27.6}^{-}$	+0.1
	DLCL-deep (Base, 25L)	121M	2	0.5	1x	29.2	+1.7
	Transformer (Base)	62M	1	1	1x	27.1	reference
	Transformer (Big)	211M	1	3	3x	28.7	+1.6
pre-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1 x	28.9	+1.8
	DLCL (Base)	$\overline{62M}$	1	1	<u>1</u> x	$\bar{27.3}^{-}$	- +0.2
	DLCL-deep (Base, 30L)	137M	2	0.5	1x	29.3	+2.2

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

41

Hot Topics in MT

- Parallel Decoding (e.g. NAT, GLAT, DAT, ...)
- Low-resource MT
- Unsupervised MT
- Multilingual NMT, Zero-shot NMT
- Speech-to-text translation
 - (Offline) ST
 - Streaming ST

Summary

- Sequence-to-sequence encoder-decoder framework for conditional generation, including Machine Translation
- Key components in Transformer
 - Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - layer norm

Code Walk

- walk through The Annotated Transformer
- Organize into group to discuss some of the design decisions, their motivation, etc.

• There will be no graded discussion, but we'll have a code https://nlp.seas.harvard.edu/2018/04/03/attention.html

