
CS11-737 Multilingual NLP

Neural Machine Translation
Models

Lei Li
https://lileicc.github.io/course/11737mnlp23fa/

1

Sequence to sequence Learning

3

Encoder-Decoder Paradigm
A generic formulation

for many tasks

pθ(y |x) = ∏
i

p(yi |x, y1:i−1)

conditional prob. modeled
by neural networks

Decoder

Encoder

Source: 我喜欢唱歌和跳舞。

target:
I like singing and dancing.

4

Encoder-Decoder Paradigm

我喜欢唱歌和跳舞。 I like singing and dancing.

A giraffe standing next to forest

“Alexa, turn off the lights”

Graduate student reading
papers on beach

Machine Translation

Image Captioning

Automatic Speech Recognition

Text-to-Image Generation

• Machine translation as directly learning a function mapping from source
sequence to target sequence

 or or

pθ(y |x) = ∏
t

p(yt |x, y1:t−1; θ)

ht = RNNθ(x, y1:t−1) LSTMθ(x, y1:t−1) GRUθ(x, y1:t−1)
p(yt |x, y1:t−1; θ) = Softmax(W ⋅ ht + b)

Sequence To Sequence (Seq2seq)

5Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

RNN

.

RNN

dancing

RNN

like

RNN

I

RNN

<eos>

RNN

跳舞

RNN

喜欢

RNN

我

RNN

<bos>

跳舞喜欢我 <eos>

Source：

Target：Encoder Decoder

• Replace cell with more advanced one
• Adaptively memorize short and long term information

Long-Short Term Memory (LSTM)

6

𝑖𝑡+1 = 𝜎(𝑀𝑖𝑥𝑥𝑡+1 + 𝑀𝑖hh𝑡 + 𝑏𝑖)

𝑜𝑡+1 = 𝜎(𝑀𝑜𝑥𝑥𝑡+1 + 𝑀𝑜hh𝑡 + 𝑏𝑜)

𝑐𝑡+1 = 𝒇𝒕+𝟏 ⊗ 𝒄𝒕 + 𝑖𝑡+1 ⊗ 𝑎𝑡+1

𝑎𝑡+1 = tanh(𝑀𝑐𝑥𝑥𝑡+1 + 𝑀𝑐hh𝑡 + 𝑏𝑎)

h𝑡+1 = 𝑜𝑡+1 ⊗ tanh(𝑐𝑡+1)

𝑓𝑡+1 = 𝜎(𝑀𝑓𝑥𝑥𝑡+1 + 𝑀𝑓hh𝑡 + 𝑏𝑓)

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997
Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000

it+1

Forget Gate

Output
Gate

Input
Gate

Memory Cellht

xt+1

ht xt+1

ht
xt+1 ht

xt+1

ot+1

ft+1

ht+1
ctct+1

• Adaptively memorize short and long term information
• like LSTM, but fewer parameters

Gated Recurrent Unit (GRU)

7

𝑧𝑡+1

𝑟𝑡+1

h𝑡

𝑥𝑡+1 h𝑡+1

h𝑡
𝑥𝑡+1

Update Gate

Reset Gate

h𝑡

~h𝑡+1

𝑧𝑡+11−

𝑧𝑡+1

Input:
Memory:

𝑥𝑡

h𝑡

𝑟𝑡+1 = 𝜎(𝑀𝑟𝑥𝑥𝑡+1 + 𝑀𝑟hh𝑡 + 𝑏𝑟)

~h𝑡+1 = tanh(𝑀h𝑥𝑥𝑡+1 + 𝑀hh(𝑟𝑡+1 ⊗ h𝑡) + 𝑏h)

h𝑡+1 = 𝑧𝑡+1 ⊗ ~h𝑡+1 + (𝟏 − 𝒛𝒕+𝟏) ⊗ 𝒉𝒕

𝑧𝑡+1 = 𝜎(𝑀𝑧𝑥𝑥𝑡+1 + 𝑀𝑧hh𝑡 + 𝑏𝑧)

h𝑡𝑥𝑡+1

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. 2014

• Embeddings are tied for decoder (decoder input and
output share the same embedding matrix W)

p(yt |x, y1:t−1; θ) = Softmax(W ⋅ ht + b)

Input Embedding and Output Embedding

8Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

RNN

.

RNN

dancing

RNN

like

RNN

I

RNN

<eos>

RNN

跳舞

RNN

喜欢

RNN

我

RNN

<bos>

跳舞喜欢我 <eos>

Source：

Target：Encoder Decoder

Seq2seq Training

9Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

RNN

.

RNN

dancing

RNN

like

RNN

I

RNN

<eos>

RNN

跳舞

RNN

喜欢

RNN

我

RNN

<bos>

跳舞喜欢我 <eos>

Source：

Target：Encoder Decoder

Training loss: Cross-Entropy

Teacher-forcing during training. (pretend to know
groundtruth for prefix)

argmin l = − ∑
n

∑
t

log pθ(xn, yn,1, …, yn,t−1)

• More layers of LSTM
Stacked LSTM for seq-2-seq

10

• No full context (only one-side)
– Bidirectional LSTM encoder could alleviate
– But still no long context

• Sequential computation in nature (encoder)
– not possible to parallelize the computation

• Vanishing gradient

Limitation of RNN/LSTM

11

h1 h2 h3 h4

ea eb ec ed _ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder: LSTMSource: 天 ⽓ 很 好

target:
The weather is nice

Transformer

• Full context and parallel: use Attention in both encoder and
decoder

• no recurrent

Motivation for New Network Architecture

13

Decoder

Encoder

Source: 我喜欢唱歌和跳舞。

target:
I like singing and dancing.

A context vector c represents the related source context for
current predicting word.

The probability of word y_i is computed as:

αmj = Softmax(D(gm, h1…n)) =
exp(D(gm, hj))

∑k exp(D(gm, hk)
cm = ∑

j

αmjhj

D(gm, hj) = gm ⋅ hj

p(ym) = Softmax(W ⋅ [gm
cm] + b)

14

Attention

y

0.6 0.2 0.1 0.1

context
vector c

g1天

x1

⽓

x2

真

x3

好

x4

!

x5

Each output token depends on input tokens differently

Neural Machine Translation by Jointly Learning to Align and Translate, Dzmitry
Bahdanau, Kyunghyun Cho, Yoshua Bengio, 2015.

https://arxiv.org/search/cs?searchtype=author&query=Bahdanau%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Bahdanau%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Cho%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Bengio%2C+Y

15

<BOS> I like

I like sing

Encoder Decoder

MHA + FFN

MHA
+FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

Softmax Softmax Softmax

I like singing and dancing.

Token
Embedding

Table

我 ⼀和 …

MHA + FFN

Token
Embedding

Table

I like you…

Transformer

我 喜 欢 唱 歌 和 跳 舞 。
Vaswani et al. Attention is All You Need. 2017

16

MultiHead Attention And Feed Forward Network

VxKxQx

Dot Product

Softmax
Linear

LayerNorm
yi = wi

xi − μ(x)
σ(x)

+ bi

+ Linear

ReLU

Linear

LayerNorm

+MHA FFN

(Qx)T × Kx/ dk

Attention(Q, K, V, x) = Softmax(
(Qx)TKx

d
) ⋅ (Vx)T

FFN(x) = max(0,x ⋅ W1 + b1) ⋅ W2 + b2

• Instead of one vector for each token
• break into multiple heads
• each head perform attention

 Headi = Attention(QWQ
i , KWK

i , VWV
i)

MultiHead(Q, K, V) = Concat(Head1, Head2, …, Headh)Wo

Multi-head Attention

17Q

Scaled Dot-Product
Attention

Linear Linear LinearLinear Linear Linear

Concat

Linear

h

K V

Multi-Head

• Maskout right side before softmax (-inf)
Self-Attention for Decoder

18

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

Q K V

Scaled Dot-Product

• C layers of encoder (=6)
• D layers of decoder (=6)
• Token Embedding: 512 (base), 1024 (large)
• FFN dim=2048

Transformer in Original Paper

19

Multi-Head
Attention

Add & Norm

Input
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Inputs

Feed Forward

Add & Norm

Output
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm
Masked

Multi-Head
Attention

Linear

Softmax

Output 

Output

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

Q K V

Scaled Dot-Product

Q

Scaled Dot-Product
Attention

Linear Linear LinearLinear Linear Linear

Concat

Linear

h

K V

Multi-Head

• Token Embedding:
– Shared (tied) input and output embedding

• Positional Embedding:
– to distinguish words in different position, Map position labels to

embedding, dimension is same as Tok Emb

 PEpos,2i = sin(
pos

10002i/d
)

PEpos,2i+1 = cos(
pos

10002i/d
)

Embedding

20

21

Transformer

Vaswani et al. Attention is All You Need. 2017

Encode

<BOS> y1 y2

y1 y2 y3

Encoder
Beam
Search

Decoder

Feed
Add &

Multi-Head
Attention

Add &

Add &

Masked
Multi-Head

Encode EncodeEncode

Encode Encode EncodeEncode

Tok Tok Tok Tok

Decod Decod Decod

Decod Decod Decod

Decod Decod Decod

Softma Softma Softma

我 喜 欢 唱 歌 和 跳 舞 。

I like singing and dancing.

0 1 32

+ + + +

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

•
• Training loss: Cross-Entropy

•

• Teacher-forcing during training.
• (pretend to know groundtruth for prefix)

P(Y |X) = ∏P(yt |y<t, x)

l = − ∑
n

∑
t

log fθ(xn, yn,1, …, yn,t−1)

Training Loss (same as Seq2seq)

22

Decoder

Encoder

Source: 我喜欢唱歌和跳舞。

target:
I like singing and dancing.

• Dropout
– Applied to before residual
– and to embedding, pos emb.
– p=0.1 ~ 0.3

• Label smoothing
– 0.1 probability assigned to non-truth

• Vocabulary:
– En-De: 37K using BPE
– En-Fr: 32k word-piece (similar to BPE)

Training

23

• Assume is the one-hot encoding of label

• Approximating 0/1 values with softmax is hard
• The smoothed version

– Commonly use

Label Smoothing

24

y ∈ ℝn

yi = {1 if belongs to class i
0 otherwise

yi = {1 − ϵ if belongs to class i
ϵ/(n − 1) otherwise

ϵ = 0.1

• Batch
– group by approximate sentence length
– still need shuffling

• Hardware
– one machine with 8 GPUs (in 2017 paper)
– base model: 100k steps (12 hours)
– large model: 300k steps (3.5 days)

• Adam Optimizer
– increase learning rate during warmup, then decrease

η =
1

d
min(

1

t
,

t

t3
0

)

Training

25

mt+1 = β1mt − (1 − β1)∇ℓ(xt)
vt+1 = β2vt + (1 − β2)(∇ℓ(xt))2

m̂t+1 =
mt+1

1 − βt+1
1

̂vt+1 =
vt+1

1 − βt+1
2

xt+1 = xt −
η

̂vt+1 + ϵ
m̂t+1

ADAM

26

• A single model obtained by averaging the last 5
checkpoints, which were written at 10-minute interval
(base)

• decoding length: within source length + 50

Model Average

27

Sequence Decoding

29

Autoregressive Generation

Encode Encode EncodeEncode

我 喜 欢 唱 歌 和 跳 舞 。 <BO

Decod

Softma

y1

y1

Decod

Softma

y2

y2

Decod

Softma

y3
I Iike singing

I Iike

<EOS>

But, this is not necessary the best

greedy decoding: output the token with max next token prob

• Now already trained a model
• Decoding/Generation: Given an input sentence x, to generate

the target sentence y that maximize the probability

•

• Two types of error
– the most probable translation is bad → fix the model
– search does not find the most probably translation → fix the search

• Most probable translation is not necessary the highest BLEU
one!

θ

P(y |x; θ)
argmax

y
P(y |x) = fθ(x, y)

Inference

30

•

• naive solution: exhaustive search
– too expensive

• Beam search
– (approximate) dynamic programming

argmax
y

P(y |x) = fθ(x, y)
Decoding

31

• start with empty S
• at each step, keep k best partial sequences
• expand them with one more forward generation
• collect new partial results and keep top-k

Beam Search

32

best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
 new_seqs = PriorityQueue()
 for (candidate, s) in best_scores:
 if candidate[-1] is EOS:
 prob = all -inf
 prob[EOS] = 0
 else:

 prob = using model to take candidate and compute next token probabilities (logp)
 pick top k scores from prob, and their index
 for each score, index in the top-k of prob:
 new_candidate = candidate.append(index)
 new_score = s + score
 if not new_seqs.full():
 add (new_candidate, new_score) to new_seqs
 else:
 if new_seqs.queue[0][1] < new_score:

Beam Search (pseudocode)

33

34

Beam Search

<BOS>

I 0.4

We 0.3

He 0.1

She 0.1

They 0.01

like 0.4
love 0.4
am 0.1
hate 0.01
want 0.01

I 0.4
We 0.3

like 0.4
do 0.3
are 0.2
can 0.01
say 0.01

I like 0.16

I love 0.16

We like 0.12

We do 0.09

I like 0.16
I love 0.16

singing 0.6

song 0.2

shouting 0.01

going 0.01

dancing 0.01

singing 0.5
dancing 0.3
you 0.11
going 0.01
it 0.01

I like singing 0.096

I like song 0.032

I love singing 0.08

I love dancing 0.048

forward by
network top-k

forward by
network

forward by
network

top-k

forward by
network

forward by
network

top-k

Machine Translation using Seq2seq and
Transformer

36

LSTM Seq2Seq w/ Attention

0

10

20

30

40

En-Fr En-De

16.95

32.68

16.46

29.9730.6

20.67

37.03
33.3

SMT (moses) SMT (best)
LSTM S2S (2014) LSTM w/ AA (RNNSearch)
LSTM w/ AA (RNNSearch LV)

WMT14
Jean et al. On Using Very Large Target Vocabulary for Neural Machine

Translation. 2015

37

Performance with Model Ensemble

0

10

20

30

40

En-Fr En-De

21.59

37.5

16.95

32.68

16.46

29.9730.6

20.67

37.03
33.3

SMT (moses) SMT (best)
LSTM S2S (2014) LSTM w/ AA (RNNSearch)
LSTM w/ AA (RNNSearch LV) LSTM Ensemble

WMT14
Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

• The most widely used benchmark (WMT14 En-De and En-
Fr)

Results on WMT14

38

• num. heads
• dim of key
• num layers
• hid dim
• ffn dim
• dropout
• pos emb

Effectiveness of Choices

39

• 30 ~ 60 encoder
• 12 decoder
• dynamic linear combination of layers (DLCL)

– or. deeply supervised
– combine output from all layers

Deep Transformer

40

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

41
Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

• Parallel Decoding (e.g. NAT, GLAT, DAT,…)
• Low-resource MT
• Unsupervised MT
• Multilingual NMT, Zero-shot NMT
• Speech-to-text translation

– (Offline) ST
– Streaming ST

Hot Topics in MT

42

• Sequence-to-sequence encoder-decoder framework for
conditional generation, including Machine Translation

• Key components in Transformer
– Positional Embedding (to distinguish tokens at different pos)
– Multihead attention
– Residual connection
– layer norm

Summary

43

• There will be no graded discussion, but we'll have a code
walk through The Annotated Transformer
https://nlp.seas.harvard.edu/2018/04/03/attention.html

• Organize into group to discuss some of the design
decisions, their motivation, etc.

Code Walk

44

https://nlp.seas.harvard.edu/2018/04/03/attention.html

