CS11-737 Multilingual NLP Text Classification and Sequence Labeling
 Lei Li
 https://lileicc.github.io/course/11737mnlp23fa/

Carnegie Mellon University
Language Technologies Institute

Text Classification

- Given an input text X , predict an output label y

Topic Classification

I like peaches and \begin{tabular}{c}
\boldsymbol{C}

food
politics
music

| like peaches and herk

food

politics

music
\end{tabular}

Language Identification

Sentiment Analysis (senencredococumenenteven) positive positive
like peaches and pear's $\begin{gathered}\text { neutral } \\ \text { negative }\end{gathered}$ hate peaches and pears
neutral

Sequence Labeling

- Given an input text X, predict an output label sequence Y of equal length!

Part of Speech Tagging

He	saw	two	
\downarrow	birds		
\downarrow	\downarrow		
PRON	VERB	NUM	NOUN

Lemmatization

Morphological Tagging

He	saw	two	birds
\downarrow	\downarrow	\downarrow	\downarrow
PronType=prs	Tense=past,	NumType=card	Number=plur
	VerbForm=fin		

... and more!

Span Labeling

- Given an input text X, predict an output spans and labels Y.

Named Entity Recognition

Leo Messi plays for لnter Miami CF PER
 ORG

Syntactic Chunking

Leo Messi plays for Inter Miami CF NP VP NP

Semantic Role Labeling

> | $\frac{\text { Leo Messi }}{\text { plays for Inter Miami CF }}$ Agent Predicate Theme |
| :---: |
| ... and more! |

Span Labeling as Sequence Labeling

- Predict Beginning, In, and Out tags for each word in a span

Leo Messi plays for Inter Miami CF PER ORG

>	Leo Messi	plays	for Inter Miami	CF
B-PER I-PER	0	O B-ORG	I-ORG I-ORG	

Text Segmentation

- Given an input text X, split it into segmented text Y. Tokenization

A well-conceived "thought exercise."
A well - conceived " thought exercise
Word Segmentation (very important for web search)

Nanjing	 Yangtze River		mayor	

Morphological Segmentation
Köpekler
Köpek ${ }_{\text {dog Number=Plural }}$
Köpekle
Tense=Aorist

- Rule-based (statistical), or span labeling models

Modeling for Sequence Labeling/ Classification

How do we Make Predictions?

- Given an input text X
- Extract features H
- Predict labels Y

Text Classification

Predict

Feature Extractor

Sequence Labeling

A Simple Feature Extractor: Bag of Words (BOW)

- Each word has a vector of weights for each tag

A Simple Predictor: Linear Transform+Softmax

$$
p=\operatorname{softmax}\left(W^{*} \mathbf{h}+\mathrm{b}\right)
$$

Softmax converts arbitrary scores into probabilities

$$
p_{i}=\frac{e^{s_{i}}}{\sum_{j} e^{s_{j}}} \quad \mathrm{~s}=\left(\begin{array}{c}
-3.2 \\
-2.9 \\
1.0 \\
2.2 \\
0.6
\end{array}\right) \longrightarrow \mathrm{p}=\left(\begin{array}{l}
0.002 \\
0.003 \\
0.329 \\
0.444 \\
0.090
\end{array}\right)
$$

Problem: Language is not a Bag of Words!

I don't love pears

There's nothing I don't love about pears

Better Featurizers

- Bag of n-grams
- Syntax-based features (e.g. subject-object pairs)
- Neural networks
- Recurrent neural networks
- Convolutional networks
- Self attention

What is a Neural Net?: Computation Graphs

"Neural" Nets

- Original Motivation: The Neurons in Brain

- Neural Network is a Computational graph
$f\left(x_{1}, x_{2}, x_{3}\right)=\sum x_{i}$

Image credit: Wikipedia

expression:

 xgraph:

A node is a \{tensor, matrix, vector, scalar\} value (x)

An edge represents a function argument.
A node with an incoming edge is a function of that edge's tail node.
A node knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial F}{\partial f(i)}$.

expression:

$$
\mathbf{x}^{\top} \mathbf{A}
$$

graph: Functions can be nullary, unary, binary, ...n-ary. Often they are unary or binary.

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

Computation graphs are generally directed and acyclic

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

expression:

$$
y=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

variable names are just labelings of nodes.

Algorithms (1)

- Graph construction
- Forward propagation
- In topological order, compute the value of the node given its inputs

Forward Propagation

graph:

Algorithms (2)

- Back-propagation:
- Process examples in reverse topological order
- Calculate the derivatives of the parameters with respect to the final value
(This is usually a "loss function", a value we want to minimize)
- Parameter update:
- Move the parameters in the direction of this derivative W -= a*dl/dW

Back Propagation

graph:

Neural Network Frameworks

PYTORCH

Examples in this class

TensorFlow

JAX
Autograd and XLA with numpy

Basic Process in (Dynamic) Neural Network Frameworks

- Create a model
- For each example
- create a graph that represents the computation you want
- calculate the result of that computation
- if training, perform back propagation and update

Pytorch Quick Tutorial

https://pytorch.org/tutorials/beginner/basics/intro.html

Feedforward Neural Net (FFN)

- also known as multilayer perceptron (MLP)
- Layers are connected sequentially
- Each layer has full-connection (each unit is connected to all units of next layer)
- Linear project followed by
- an element-wise nonlinear activation function

$$
h=\sigma(w \cdot x+b)
$$

- There is no connection from output to input

Recurrent Neural Networks

Long-distance Dependencies in Language

- Agreement in number, gender, etc.

He does not have very much confidence in himself. She does not have very much confidence in herself.

- Selectional preference

The reign has lasted as long as the life of the queen.
The rain has lasted as long as the life of the clouds.

Recurrent Neural Networks (Elman 1990)

- Tools to "remember" information

Sentence Representation for Downstream Tasks

- Text classification
- Conditional generation
- Sentense retrieval

Representing Words

- Sequence

Labeling

- Language
prediction1 prediction2 prediction3 prediction4
Modeling

Training RNN

 prediction1 prediction2 prediction3 prediction4

RNN Training

- The unrolled graph is a well-formed (DAG) computation graph-we can run backprop

- Parameters are tied across time, derivatives are aggregated across all time steps
- This is historically called "backpropagation through time" (BPTT)

Parameter Tying

- Params are shared
- gradients accumulated prediction1 prediction2 prediction3 prediction4

Bi-directional RNN

Multilingual Labeling/Classification Data and Models

Language Identification

LTI Language Identification Corpus http://www.cs.cmu.edu/~ralf/langid.html
 Benchmark on 1152 languages from a variety of free sources

langid.py
 https://github.com/saffsd/langid.py
 Off-the-shelf language ID system for 90+ languages

Automatic Language Identification in Texts: A Survey https://arxiv.org/pdf/1804.08186.pdf

Text Classification

- Very broad field, many different datasets

MLDoc: A Corpus for Multilingual Document Classification in Eight Languages https://github.com/facebookresearch/MLDoc
Topic classification, eight languages
PAWS-X: Paraphrase Adversaries from
https://github.com/google-research-datasets/paws/tree/
Paraphrase detection (sentence pair classification)
Cross-lingual Natural Language Inference (XNLI) corpus
https://cims.nyu.edu/~sbowman/
Textual entailment prediction (sentence pair classification)
Cross-lingual Sentiment Classification
Available from: https://github.com/ccsasuke/
Chinese-English cross-lingual sentiment dataset

Part of Speech/Morphological Tagging

- Part of universal dependencies treebank https://universaldependencies.org/
- Contains parts of speech and morphological features for 90 languages
- Standardized "Universal POS" and "Universal Morphology" tag sets make things consistent
- Several pre-trained models on these datasets:
- Udify: https://github.com/Hyperparticle/udify
- Stanza: https://stanfordnlp.github.io/stanza/

Named Entity Recognition

- "Gold standard" data
- CoNLL 2002/2003 Language Independent Named Entity Recognition
- https://www.clips.uantwerpen.be/conll2003/ner/
- English, German, Spanish, Dutch human annotated data
- "Silver Standard"
- WikiAnn Entity Recognition/Linking in 282 Languages
- https://www.aclweb.org/anthology/P17-1178/
- Available from: https://github.com/google-research/xtreme
- Data automatically extracted from Wikipedia using inter-page links

Composite Benchmarks

- Benchmarks that aggregate many different sequence labeling/classification tasks
- XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization
- 10 different tasks, 40 different languages
- https://github.com/google-research/xtreme
- XGLUE: A New Benchmark Dataset for Cross-lingual Pretraining, Understanding and Generation
- https://microsoft.github.io/XGLUE/
- 11 tasks over 19 languages (including generation)

Discussion Today

Assignment 1 Introduction

