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Text Classification

e (Given an input text X, predict an output label vy
Topic Classitication

o~ food food
| like peaches and  roliics | [Ike peaches anad her Kpo“tlcs
MusIC MUuSIC
L angquage ldentitication
A 9IS English
ike peaches and pears gpa”ese P& BUAGFE v Japanese
erman ~ran
Seﬂtlmeﬂt Aﬂa‘ SlS (sentence/documérlwt—level)
positive positive

Ike peaches and pear/é eural] hate peaches and pearg ™ neutra

..and manv many more!




Sequence Labelinc

e (Given an input text X, predict an output label sequence Y
of equal length!

Part of Speech Tagging | emmatization
He saw two Dbirds He saw two Dirds
} | ' } ! | } |
PRON VERB NUM NOUN he  see two ___ birg

Morphological Tagging
He saw two DIrds

} \ } '

PronType=prs lense=past, NumType=card  Number=plur
VerbForm=fin

... .and more!



Span Labelinc

e (Given an input text X, predict an output spans and labels Y.

Named Entity Recognition

L eo Messi plays for Inter Miami CF
PER ORG

Syntactic Chunking

| eo Messi plays for Inter Miami CF

NP VP NP
Semantic Role Labeling

| e0 Messi plays for Inter Miami CF
Agent Predicate Theme

...and more! 4




Span Labeling as Sequence Labeling

e Predict Beginning, In, and Out tags for each word Iin a
span

L eo Messi plays for Inter Miami CF
PER ORG

}

Leo Messi plays for Inter Miami CF
B-PER |-PER O O B-ORG I-ORG |I-ORG




Text Segmentation

e (Given an input text X, split it into segmented text VY.
lokenization

A well-concelved ‘thougnt exercise.’

A well - concelved ~ thought exercise .
Word Seg mentation (very important for web search)
— AmeRLAR.
ERMm 1L KM AR MK AW
Nanjing Yangtze River bridge Nanjing mayor Jiang Da Qiao
Morphological Segmentation

Kopekler

KOopek ler Kopekle [

dog Number=Plural dog_paddle Tense=Aorist

e Rule-based (statistical), or span labeling models



Modeling for Sequence Labeling/
Classification



How do we Make Predictions®?
e (Given an input text X

e Extract features H
e Predict labels Y

Text Classification seqguence Labeling
positive PRON VERB  NOQUN
Predict Predict  Predict  Predict

* de  ole

Feature txtractor ! FeatureT Extractor !

t t t t t t

| lIke peaches | ke peaches



A Simple Feature Extractor: Bag of Words (BOW)

e Fach word has a vector of weights for each tag

! Hll<e peelaches

\ookup \ookup \ookup

) - e

Labe\ Probs




A Simple Predictor: Linear Transform+Softmax
0 = softmax(W *h + b))

Softmax converts arbitrary scores into probabilities

3.0 0.002

29 0.003

e 1.0 | 0.329

p; = S e = | 20 P= 1 0.444

0.6 0.090
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Problem: Language 1s not a Bag of Words!

| don't love pears

There's nothing | don't love about pears
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Better Featurizers

e Bag of n-grams
® Syntax-based features (e.q. subject-object pairs)

e Neural networks
—|Recurrent neural networks
— Convolutional networks
— Self attention
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What is a Neural Net?:
Computation Graphs




"Neural” Nets
e Original Motivation: The Neurons in Brain

Image credit: Wikipedia
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expression:

X

grapn:

A node is a {tensor, matrix, vector, scalar} value

™
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An edge represents a function argument.

A node with an incoming edge is a function of that
edge’s tall node.

A node knows how to compute its value and the value of
its derivative w.r.t each argument (edge) times a

OF
()

derivative of an arbitrary input
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expression:
x' A

grapn:

binary, ...

Functions can be nullary, unary,

f(U,V)

\®‘@

n-ary. Often they are unary or binary.
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expression:

x| Ax

grapn:

f(M,v) =Mv

\®‘@

Computation graphs are generally directed and acyclic
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expression:

x| Ax

grapn:

f(M,v) =Mv

f(U,V) =0V,

f(u) =u’
& @
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expression:

- X
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expression:

y=x Ax+b-x+c

grapn:

variable names are just labelings of nodes.
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Algorithms (1

e (Graph construction

e Forward propagation
— |n topological order, compute the value of the node given its inputs
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Forward Propagation

grapn:
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Forward Propagation

grapn:
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Forward Propagation

grapn:
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Forward Propagation

grapn:
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Forward Propagation

grapn:
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Forward Propagation

grapn:
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Forward Propagation

grapn:
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Forward Propagation

graph f(x1,x2,23) = 7; T,
f(M,V) = Myv
f(U, V) V
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Algorithms (2

e Back-propagation:
— Process examples in reverse topological order

— Calculate the derivatives of the parameters with respect to the final
value
(This is usually a “loss function”, a value we want to minimize)

e Parameter update:

— Move the parameters in the direction of this derivative
W -=a* dl/dW
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grapn:

Back Propagation
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Neural Network Frameworks

Autograd and XLA

TenSOI'F|OW with numpy

PYTH6RCH

Examples In this class
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Basic Process in (Dynamic) Neural Network Frameworks

e Create a model

® FOr each example
— create a graph that represents the computation you want
— calculate the result of that computation
— If training, perform back propagation and update
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Pvtorch Quick Tutorial

hitps://pytorch.org/tutorials/beginner/basics/intro.htmi
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https://pytorch.org/tutorials/beginner/basics/intro.html

Feedforward Neural Net (FFN

® also known as multilayer
oerceptron (MLP)

e | ayers are connected sequentially

e Each layer has full-connection
(each unit is connected to all units
of next layer)

— Linear project followed by

— an element-wise nonlinear activation
function

h=ow-x+Db)

® [here IS N0 connection from Emb I:I I:I I:I I:I
output to INput This movie is great
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Recurrent Neural Networks



Long-distance Dependencies in Language
e Agreement In number, gender, etc.

He does not have very much confidence in himself.
She does not have very much confidence in herself.

e Selectional preference

The reign has lasted as long as the lite of the queen.
The rain has lasted as long as the lite of the clouds.
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Recurrent Neural Networks (Elman 1990
e [00Is to “remember’ iInformation

- JE0E TE0s Tk 160

| Ike these pears
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Sentence Representation for Downstream Tasks

o [ext classification
e Conditional generation
® Sentense retrieval prediction

} @ § o § o § o |
3

| ke these pears 40




Representing VWWords

® Seqguence
L abeling

* Language  prediction1 prediction2 prediction3 prediction4

Modeling
o g Fe g

| ike these pears 4




Training RNN um —fotal loss

e calculate label label? label3 label4
| | / \ | |

total loss \O%S‘\ \0%32 \O%SS \0%34
orediction1 prediction?2 prediction3 prediction4

1% Tk Tenk Tems

| ke these pears 42



RNN Traininc

e The unrolled graph is a well-formed (DAG) computation
graph—we can run backprop

— Parameters are tied across time, derivatives are aggregated across
all time steps

— This is historically called “backpropagation through time” (BPTT)
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Parameter Tying sum=—otal loss
® Params are \ableH \able\Z/ \\able\S label4

shared \O%S‘\ \O%SZ \O%SS \0%84

* gradients prediction1 prediction2 prediction3 prediction4

accumulated
o o o o

| ke these pears 4




Bi-directional RNN

O O O B-GPEI-GPE O B-PERI-PER O

A A A A A A A A A
I I I I I I I I I
G G ) ) ) CEER

Llngar
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5 5 5 5 5 5 — 5 5
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5
|
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The governor of Santa Barbarais Cathy Murillo .
1640 897 45 1890 78 943 3521 782 533



Multilingual Labeling/Classification
Data and Models



Language ldentification

LTI Language |dentification Corpus
http://www.cs.cmu.edu/~ralt/langid.html

Benchmark on 1152 languages from a variety of free sources

langid.py
https://github.com/saftsd/langid.py
Off-the-shelf language ID system for 90+ languages

Automatic Language Identification in Texts: A Survey
hitps://arxiv.org/pdf/1804.08186.pdt
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http://www.cs.cmu.edu/~ralf/langid.html
https://github.com/saffsd/langid.py
https://arxiv.org/pdf/1804.08186.pdf

Text Classification
e \/ery broad field, many different datasets

MLDoc: A Corpus for Multilingual Document Classification in Eight Languages

https://github.com/facebookresearch/MLDoc
Topic classification, eight languages

PAWS-X: Paraphrase Adversaries from

https://github.com/google-research-datasets/paws/tree/
Paraphrase detection (sentence pair classification)

Cross-linqual Natural Lanquage Inference (XNLI) corpus

https://cims.nyu.edu/~sbowman/
Textual entailment prediction (sentence pair classification)

Cross-linqual Sentiment Classification
Available from: https://github.com/ccsasuke/
Chinese-English cross-lingual sentiment dataset



https://github.com/facebookresearch/MLDoc
https://cims.nyu.edu/~sbowman/xnli/
https://github.com/ccsasuke/adan
https://github.com/google-research-datasets/paws/tree/master/pawsx

Part of Speech/Morphological Tagginc

e Part of universal dependencies treebank
hitps://universaldependencies.org/

e Contains parts of speech and morphological teatures for 90
languages

e Standardized "Universal POS" and "Universal Morphology” tag
sets make things consistent

e Several pre-trained models on these datasets:

— Udify: https://github.com/Hyperparticle/udify

— Stanza: https://stanfordnlp.qgithub.io/stanza/
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https://universaldependencies.org/
https://github.com/Hyperparticle/udify
https://stanfordnlp.github.io/stanza/

Named Entity Recognition

e “Gold standard” data

— CoNLL 2002/2003 Language Independent Named Entity
Recognition

— https://www.clips.uantwerpen.be/conll2003/ner/
— English, German, Spanish, Dutch human annotated data

e “Silver Standard”
— WikiAnn Entity Recognition/Linking in 282 Languages
— https://www.aclweb.org/anthology/P17-1178/
— Available from: https://github.com/google-research/xtreme
— Data automatically extracted from Wikipedia using inter-page links
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https://www.clips.uantwerpen.be/conll2003/ner/
https://www.aclweb.org/anthology/P17-1178/
https://github.com/google-research/xtreme

Composite Benchmarks

e Benchmarks that aggregate many different sequence
labeling/classification tasks

o XTREME: A Massively Multilingual Multi-task Benchmark for
Evaluating Cross-lingual Generalization

— 10 different tasks, 40 different languages
— https://github.com/google-research/xtreme

e XGLUE: A New Benchmark Dataset for Cross-lingual Pre-
training, Understanding and Generation

— https://microsoft.github.io/XGLUE/
— 11 tasks over 19 languages (including generation)
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https://github.com/google-research/xtreme
https://microsoft.github.io/XGLUE/

Discussion loday

Assignment 1 Introduction




