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1. Overview: ST Problem and Challenge

2. What is a better model for ST?

3. Better training strategy for ST?

4. New ST-powered Products

Outline
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• source language speech(audio)  target lang text
Speech-to-Text Translation(ST)
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“Hello”

你好

Application Type

• (Non-streaming) ST 
⾮流式语⾳翻译


• Streaming ST          
流式语⾳翻译

System

• Cascaded ST          
级联语⾳翻译


• End-to-end ST          
端到端语⾳翻译



- Challenges:

1. Computationally inefficient

2. Error propagation:  Wrong transcription � Wrong translation

Cascaded ST System
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ASR system

Good 
morning

MT system

Bonjour

Transcription TranslationSpeech signal

do at this and see if it works for you � 这样做，看看它是否对你有⽤

duet this and see if it works for you � ⼆重奏⼀下，看看它是否对你有⽤



• Single model to produce text translation from speech

• Popular model: Encoder-Decoder architecture (e.g. Transformer)

• Advantage:


– Reduced latency, simpler deployment

– Avoid error propagation

End-to-end ST Model
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Bonjour
Translation

Encoder

(Transformer)

Decoder

(Transformer)

End-to-end ST modelSpeech signal

[1] Bérard et al., Listen and translate: A proof of concept for end-to-end speech-to-text translation. 2016



Basic Speech Translation Architecture (Same as MT)
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Transformer-based: N-layer encoder, M-layer decoder
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• Data scarcity - lack of large parallel corpus

• Modality disparity between audio and text

• Require low latency for product serving

Challenge
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• Model

– Better Encoder: LUT [AAAI 2021a] Chimera[ACL 2021a]


– Better Decoder: COSTT[AAAI 2021b]

• Training technique


– Audio pre-training: Wave2Vec2.0[Baevski et al 2021]

– Progressive multi-task training: XSTNet [Interspeech 2021]


• Speed-up Inference (not in this talk)

– Parallel Decoding: GLAT [ACL 2021b]


– GPU optimization: LightSeq [NAACL2021]

Approaches for End-to-end ST
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Listen, Understand and Translate: 

Triple Supervision Decouples End-
to-end Speech-to-text Translation

Qianqian Dong, Rong Ye, Mingxuan Wang, Hao Zhou, Shuang Xu, Bo Xu, Lei Li
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Drawbacks of the Encoder-Decoder Structure
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Encoder Decoder

1. A single encoder is hard to capture the 
representation of audio for the translation.

2. Limited in utilizing the information of “transcription” in 
the training.



Question: How human translate?

“Listen-Understand-Translate”(LUT) model based motivated by 
human’s behavior

Motivation: Mimic human’s behavior
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Motivation of Better Encoding
Drawback 1:   A single encoder is not enough.

Idea 1: Introduce a semantic encoder 

Drawback 2:   Limit in using “transcript” info.

Idea 2: Utilizing the pre-trained representation (e.g. BERT) of the 
“transcript” to learn the semantic feature.

Acoustic 
Encoder 

Semantic Encoder 
(Understand)

Decoder

(Translate)

BERT of “transcript”

supervise

“transcript”
supervise
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LUT for End-to-end ST
Training data: triples of 

    <speech, transcript_text, translate_text>

Listen, Understand and Translate [Q. Dong, R. Ye, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]

Acoustic 

Encoder

(Listen)

Semantic 

Encoder


(Understand)

Translation

Decoder


(Translate)

Input :

Log-mel 

fbank feature 

(𝑥)

Transcript :

“Good morning”

(𝑧)

CTC loss

BERT representation

Distance loss CE loss

Translation :

“Bonjour”

(𝑦)



Learning Shared Semantic Space 
for Speech-to-Text Translation

Chi Han, Mingxuan Wang, Heng Ji, Lei Li
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Paper: https://arxiv.org/abs/2105.03095 
Code: https://github.com/Glaciohound/Chimera-ST 

https://github.com/Glaciohound/Chimera-ST


17

Insights from Cognitive Neuroscience

Convergence sites of speech (blue) and text (yellow)

[2] Spitsyna, Galina, et al. "Converging language streams in the human temporal lobe." Journal of Neuroscience 26.28 (2006): 7328-7336.

Speech and text interfere with each other in brain[1]

[1] Van Atteveldt, Nienke, et al. "Integration of letters and speech sounds in the human brain." Neuron 43.2 (2004): 271-282.

processing pathsactivation map
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Idea: Bridging the Speech-Text modality gap with Shared Semantic Representation

ST triple data: 

    <speech, transcript_text, translate_text>

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]
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Chimera Model for ST
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Training with auxiliary objectives: ST + MT + Contrastive loss

Benefit: able to exploit large external MT data

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]
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Chimera achieves the best (so far) BLEU on all languages in MuST-C

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]



Consecutive Decoding for 
Speech-to-text Translation

Qianqian Dong, Mingxuan Wang, Hao Zhou, Shuang Xu, Bo Xu, Lei Li
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Question: How to help the model take notes like human interpreter?
Goal: Seamless Trans-trans🤗 
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We design “COnSecutive Transcription and Translation”(COSTT) based 
on interpreter’s noting behavior to help the model memory.

(apples) apples pommes

Transcription Translation-

a p p l e s p o m m e s
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Motivation of Better Decoding 
Problem1:   How to give the decoder hints? 

Idea 1: Introduce a consecutive decoder for trans-trans. 

Problem2: Long acoustic sequence is challenging for the encoder! 

Idea 2: Introduce a compressed encoder to relief the model 
memory. 

Compressed 
Encoder

Consecutive 
Decoder
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COSTT for ST

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]

Acoustic-Semantic 
Modeling

Transcription-Translation 
Modeling

Input :

Log-mel fbank 

feature of audio

Transcript :

“Good morning”CTC loss

Acoustic

represent: CE loss

Translation:

“Bonjour”

Semantic

represent:

Shrinking



• Unified training with both 
transcript and translation 
text


• Reduced encoder output 
size with CTC-guided 
shrinking 


• Able to pre-train the 
decoder with external MT 
parallel data

Advantages of COSTT
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Semantic 

Acoustic 
~1000

~10

Phoneme 
spikes

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]



End-to-end Speech Translation via 
Cross-modal Progressive Training

• Link: https://arxiv.org/abs/2104.10380

Rong Ye, Mingxuan Wang, Lei Li
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Idea 1: Multi-task Training 
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SPEECH

C'est 

TRANSLATION

(In French)

This is 
an apple.
TRANSCRIPT

(In English)

ST

ASR

MT


Goal: To fully utilize the existing

<Speech, Transcript, Translation> supervision.

Decomposed 
into three sub-

tasks with 
parallel 

supervision, ST, 
ASR and MT.



Idea 2: Using large-scale MT data

28

Comparison of dataset size 

between ST and MT
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🤔 How to introduce MT 
data with much larger 
scale to improve ST 

performance?



Cross Speech-Text Network (XSTNet)

29End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]



Supports to train MT data
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 Transformer MT model

 We can add more external MT data to train Transformer 

encoder & decoder

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]



Supports inputs of two modalities
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 Wav2vec2.0[1] as the acoustic encoder

 We add two convolution layers with 2-stride to shrink the length.

≈Acoustic 
encoder

[1] wav2vec 2.0: A framework for self-supervised learning of speech representations, 2020



• We use language indicators to distinguish different 
tasks.

Language indicator strategy
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Tasks Source input Target output

MT <en> This is a book. <fr> c'est un livre.

ASR <audio> <en> This is a book.

ST <audio> <fr> c'est un livre.

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]



Progressive Multi-task Training
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#

Multi-task Finetune

Using (1) external MT 


     (2)   with <speech, translation>

     (3)  with <speech, transcript> 


DMT−ext
DST
DASR

Large-scale MT pre-training 


Using external MT DMT−ext

#
Progressive:


Don’t stop 


training DMT−ext

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]
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XSTNet achieves State-of-the-art Performance

XSTNet-Base: Achieves the SOTA in the restricted setup

XSTNet-Expand: Goes better by using extra MT data

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]
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XSTNet better than cascaded ST! a gain of 2.6 BLEU
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Cascaded-Espnet
Cascaded-Strong
XSTNet-Expand

Cascaded 

- Strong

Model Training data Performance

(En-De)

ASR W2V2+ Transformer MuST-C DASR WER=13.0
MT Transformer-base WMT + MuST-C DMT BLEU=31.7

What is “Cascaded-Strong” system?
Strong ASR model Large-scale MT data+
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VolcTransStudio: Video Translation Platform

Correct-and-Memorize: Learning to translation from interactive revisions [Rongxiang Weng, Hao Zhou, Shujian Huang, Yifan Xia, Lei Li, Jiajun Chen. IJCAI 19]

实时翻译，⾃动提示 & 交互式修改





• End-to-end Speech-to-Text works!

• Use external ASR, MT data, and audio/text for auxiliary signals

• Model


– LUT: two-stage encoder, additional BERT KD [Dong et al AAAI 2021a] 


– Chimera: Shared semantic space encoder with fixed-size memory [Han et al 
ACL 2021]


– COSTT: consecutive transcription-translation decoder [Dong et al AAAI 2021b]

• Training technique


– Audio pre-training: Wave2Vec2.0[Baevski et al 2021]


– External MT Pre-training

– XSTNet: Progressive multi-task training [Ye et al Interspeech 2021]

Summary
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Thanks
⽕⼭翻译官⽹ ⽕⼭翻译公众号

neural speech translation toolkit

https://github.com/bytedance/neurst

High performance sequence inference

https://github.com/bytedance/lightseq

https://github.com/bytedance/neurst
https://github.com/bytedance/lightseq

