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The Rise of New Media Platforms
Toutiao Helo Douyin/Tiktok



• Automatic News Writing 
• Author writing assist tools 

– Title generation and text summarization 
• Automatic Creative Advertisement Design 
• Dialog Robots w/ response generation 
• Translation of content across multiple 

languages 
• Story Generation
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Huge Demand for Automatic Content 
Generation Technologies
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Automated News Writing

Xiaomingbot is 
deployed and 

constantly 
producing news 
on social media 

platforms 
(TopBuzz & 

Toutiao).
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AI to Improve Writing

Text generation 
to rescue!



1. Overview 
2. Learning disentangled latent 

representation for text 
3. Mirror-Generative NMT 
4. Multimodal machine writing 
5. Summary
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Outline



Disentangled Latent 
Representation for Text

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, 
ICLR20b] 

DSS-VAE [Y. Bao, H. Zhou, S. Huang, Lei Li, 
L. Mou, O. Vechtomova, X. Dai, J. Chen, 

ACL19c]
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Natural Language Descriptions

Sukiyaki is a Japanese 
restaurant. It is a 
pub and it has a 
average cost and 
good rating. It is 
based in seattle.

name Sukiyaki

eatType pub

food Japanese

price average

rating good

area seattle
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Data to Text Generation

Style long dress

Painting bamboo ink

Texture poplin
Feel smooth

Made of poplin, this long dress has 
an ink painting of bamboo and 
feels fresh and smooth.

[1] The E2E Dataset: New Challenges For End-to-End Generation. https://github.com/tuetschek/e2e-dataset
[2] Can Neural Generators for Dialogue Learn Sentence Planning and Discourse Structuring?. https://nlds.soe.ucsc.edu/sentence-planning-
NLG

SentenceData Table 
<key, value>

Sia Kate Isobelle Furler (born 
18 December 1975) is an 

Australian singer, songwriter, 
voice actress and music 

video director.

Name: Sia Kate Isobelle 
Furler 
DoB: 12/18/1975 
Nationality: Australia 
Occupation: Singer, 
Songwriter

Medical 
Reports

Fashion 
Product 

Description

Person 
Biography

The blood pressure is higher than 
normal and may expose to the 

risk of hypertension 

https://github.com/tuetschek/e2e-dataset
https://nlds.soe.ucsc.edu/sentence-planning-NLG
https://nlds.soe.ucsc.edu/sentence-planning-NLG


• Inference: 
– Given: table data , as key-position-value triples.  
– e.g. Name: Jim Green => (Name, 0, Jim), (Name, 1, 

Green) 
– Output: fluent, accurate and diverse text 

sequences  
• Training: 

– : pairs of table data and text. 

– : raw text corpus. 

x

y

{⟨xi, yi⟩}N
i=1

{yj}M
j=1 M ≫ N
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Problem Setup



• Desired Properties:  
– Accuracy: semantically consistent with the 

content in the table 
– Diversity: Ability to generate infinite varying 

utterances 
• Scalability: real-time generation, latency, 

throughput (QPS) 
• Training: limited table-text pairs 

12

Why is Data-to-Text Hard?
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Previous Idea: Templates

name Sukiyaki

eatType pub

food Japanese

price average

rating good

area seattle

Sukiyaki is a Japanese 
restaurant. It is a 
pub and it has a 
average cost and 

good rating. It is in 
seattle.

[name] is a [food] restaurant. 
It is a [eatType] and it has 
a [price] cost and [rating] 

rating. It is in [area].

But manually creation of 
templates are tedious 



Raw text

Motivation 2: 
   Incorporate raw text 
corpus to learn good 
representation.
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Our Motivation for 
Variational Template Machine

Motivation 1: 
   Continuous and 
disentangled 
representation for 
template and content

Template

Content
Table

Sentence

q (template, 
content | 
sentence)

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b]
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Variational Template Machine

zc

y

xtable 
data

text

template 
variable

content 
variable

Input: triples of <field_name, 
position, value> 

   

1. Neural Net 
 

2. Sample , e.g. 
Gaussian 

3. Decode  from  using 
another NN (e.g. 
Transformer)

{x f
k , xp

k , xv
k}K

k=1

p(c |x) ∼
maxpool(tanh(W ⋅ [xk

f , xk
p, xk

v] + b))
z ∼ p0(z)

y [c, z]

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b]



Key idea: Disentangling 
content and templates while 
preserving as much 
information as possible! 
Total loss = 

Reconstruction loss 

+ 
Information-Preserving loss 

Training VTM

zc

y

xtable 
data

text

template 
variable

content 
variable
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Variational Inference

zc

y

xtable 
data

text

template 
variable

content 
variable

Instead of optimizing exact and 
intractable expected likelihood, 
minimizing the (tractable) 
variational lower bounds.

      

𝑙𝑝  = −E log∫ 𝑝(𝑦 𝑐(𝑥), 𝑧)𝑝(𝑧)dz

ELBOp = − E𝑞(𝑧 𝑦)log𝑝(𝑦 𝑐(𝑥), 𝑧) + KL[𝑞(𝑧 |𝑦) | |𝑝(𝑧)]

𝑙𝑟  = −E log∬ 𝑝(𝑦 𝑐, 𝑧)𝑝(𝑧)𝑝(𝑐)dzd𝑐

ELBOr = − E𝑞(𝑧 𝑦)𝑞(𝑐 𝑦)log𝑝(𝑦 𝑐, 𝑧)
+KL[𝑞(𝑧 |𝑦) | 𝑝(𝑧)] + KL[𝑞(𝑐 |𝑦) | |𝑞(𝑐)]



1. Content preserving loss 
 

2. Template preserving loss of 
pairs 

 

 is the text sketch by removing 
table entry 
i.e. cross entropy of variational 
prediction from templates

lcp = 𝔼q(c|y) |c − f(x) |2 + DKL(q(c |y) ∥ p(c))

ltp = − 𝔼q(z|y)[log p(ỹ |z, x)]
ỹ

Preserving Content & Template

zc

y

xtable 
data

text

template 
variable

content 
variable



Table data :  
{name[Loch Fyne], 

eatType[restaurant], food[French] 
price[below $20]} 

Text :   
Loch Fyne is a French restaurant 

catering to a budget of below $20.
Text Sketch :  
<ent> is a <ent> <ent> catering to 

a budget of <ent>.

x

y

ỹ
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Preserving Template

zc

y

xtable 
data

text

template 
variable

content 
variable

Ensure the template variable could recover the text sketch



Table Text

Sukiyaki is a Japanese restaurant. It is 
a pub and it has a average cost and 

good rating. It is in seattle.

?
q(<c,z>|y)

Known for its creative flavours, 
Holycrab's signatures are the 

Hokkien crab.

• Semi-supervised learning: “Back-translate” 
corpus to obtain pseudo-parallel pairs 
<table, text>, to enrich the learning

20

Learning with Raw Corpus

name Sukiyaki
eatType pub

food Japanese
price average
rating good
area seattle



• Tasks 
– WIKI: generating short-bio from person profile. 
– SPNLG: generating restaurant description from 

attributes 

• Evaluation Metric: 
– Quality (Accuracy): BLEU score to ground-truth 
– Diversity: self-BLEU (lower is better) 21

Evaluation Setup

Dataset
Train Valid Test

table-text 
pairs raw text table-text 

pairs raw text table-text 
pairs

WIKI 84k 842k 73k 43k 73k
SPNLG 14k 150k 21k / 21k
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VTM Produces High-quality and 
Diverse Text

WIKI

B
LE

U

0.08

0.124

0.168

0.212

0.256

0.3

Self-BLEU
0.6 0.705 0.81 0.915 1.02

VTM T2S-beam

T2S-
pretrain

Temp-KN

SPNLG

B
LE

U
0.05

0.14

0.23

0.32

0.41

0.5

Self-BLEU
0.3 0.48 0.66 0.84 1.02

VTM T2S-beam
T2S-
pretrain

Temp-KN

Ideal Ideal

VTM uses beam-search decoding.

VTM [Ye, …, Lei Li, ICLR20b]



BL
EU
↑

0.1

0.14

0.18

0.22

0.26

Self-BLEU↓
0.7 0.75 0.8 0.85 0.9

23

Raw data and loss terms are necessary

VTM

w/o 
information-preserving losses

w/o raw data

Ablation results on Wiki-bio dataset
ideal
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Interpreting VTM
Template variable project to 2D
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VTM Generates Diverse Text

1: John Ryder (8 August 1889 – 4 April 1977) 
was an Australian cricketer.

2: Jack Ryder (born August 9, 1889 in Victoria, 
Australia) was an Australian cricketer. 

3: John Ryder, also known as the king of 
Collingwood (8 August 1889 – 4 April 1977) 
was an Australian cricketer. 

Input Data Table Generated Text
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Learning Disentangled Representation 
of Syntax and Semantics 

There is an apple 
on the table

Syntax provider 

The dog is 
behind the door

Semantic content

DSSVAE

There is a dog behind the door

DSS-VAE [Y. Bao, H. Zhou, S. Huang, Lei Li, L. Mou, O. Vechtomova, X. Dai, J. Chen, ACL19c]

x

zsyn zsem

syntactic 
style

semantic 
content

sentence

DSSVAE enables learning and 
transferring sentence-writing styles 



• VTM and its extensions have been applied 
to multiple online systems on Toutiao 
including query suggestion generation, ads 
bid-word generation, etc.  

• Serving over 100million active users.  
• 10% of query suggestion phrases from the 

generation algorithm. 

27

Impact
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Part I Takeaway

zc

y

xtable 
data

text

template 
variable

content 
variable

x

zsyn zsem

syntactic 
style

semantic 
content

sentence

VTM DSSVAE

•Deep latent models enable learning 
with both table-text pairs and 
unpaired text, with high accuracy 

•Disentangling approach for model 
composition 

•Variational technique to speed up 
inference



1. Overview of Intelligent Information 
Assistant 

2. Learning disentangled latent 
representation for text 

3. Mirror-Generative NMT 
4. Multimodal machine writing 
5. Summary and Future Directions

29

Outline
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Neural Machine Translation

Chinese 
x ∼ 𝖣xy

English 
y ∼ 𝖣xy

[p(y |x; θxy)]
src2tgt 

[p(x |y; θyx)]
tgt2src TM

• BUT, very expensive/non-trivial to obtain 
– Low resource language pairs (e.g., English-to-Tamil) 
– Low resource domains (e.g., social network) 

• Large-scale mono-lingual data are not fully 
utilized

• Neural machine translation (NMT) systems are 
super good when you have large amount of 
parallel bilingual data



• There are two categories of methods using 
non-parallel data 
– Training 
‣ Back-translation, Joint Back-translation, dual 

learning… 
– Decoding 
‣ Interpolation w/ external LM … 

• Still not the best

31

Existing approaches to exploit non-
parallel data



[p(y; θy)]
target LM

[p(y |x; θxy)]
src2tgt 

[p(x |y; θyx)]
tgt2src 

• A pair of relevant TMs so that they can 
directly boost each other in training

32

So, what we expect?

[p(y |z; θy)]
target LM

[p(y |x, z; θxy)]
src2tgt 

[p(x |y, z; θyx)]
tgt2src 

z(x, y)

[p(y |x; θxy)]
src2tgt 

[p(y |x, z; θxy)]
src2tgt 

z(x, y)

• A pair of relevant TM & LM 
so that they can cooperate 
more effectively for better 
decoding We need a 

bridge
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Integrating Four Language Skills with 
MGNMT

z(x, y)
yx

y x

[p(y |x, z; θxy)]src2tg[p(y |z; θy)]target 

[p(x |y, z; θyx)]tgt2sr[p(x |z; θx)]source 

MGNM

1. composing sentence in Source lang 
2. composing sentence in Target lang 
3. translating from source to target 
4. translating from target to source

Benefits 
utilizing both 

parallel 
bilingual data 

and non-
parallel corpus

MGNMT [Z. Zheng, H. Zhou, S. Huang, L. Li, X. Dai, J. Chen, ICLR 2020a]



Mirror-Generative NMT

We propose the mirror-generative NMT (MGnmt) to address the aforementioned problems
for e↵ectively exploiting non-parallel data in NMT.

I Jointly training translation models (i.e., Tmx!y and Tmy!x) and language models (i.e.,
Lmx and Lmy) in a unified probabilistic framework.

I A latent variable z representing the shared semantic space between the two language x
and y , inspired by generative NMT (Shaw et al., 2018)

x yMGNMT z(x, y)
[p(x |z)]src LM

[p(x |y, z)]tgt2src TM

[p(y |x, z)]src2tgt TM

[p(y |z)]
tgt LM

y

x

z(x, y) yx
y x

[p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

MGNMT

Zheng et al. (NJU & ByteDance) iclr20 31 Mar, 2020 13 / 34

• The mirror property to decompose 

34

Approach: Mirror-Generative NMT

Published as a conference paper at ICLR 2020

z

x y

z

x y
GNMT MGNMT

Figure 1: The
graphical model of
MGNMT.

x yMGNMT z(x, y)
[p(x |z)]src LM

[p(x |y, z)]tgt2src TM

[p(y |x, z)]src2tgt TM

[p(y |z)]
tgt LM

y

x

z(x, y) yx
y x

[p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

MGNMT

Figure 2: Illustration of the mirror property of MGNMT.

For decoding, some related works (Gulcehre et al., 2015) propose to interpolate external language
models LMy (trained separately on target monolingual data) to translation model TMx!y, which in-
cludes knowledge from target monolingual data for better translation. This is particularly useful for
domain adaptation because we may obtain better translation output quite fitting test domain (e.g.,
social networks), through a better LMy. However, directly interpolating an independent language
model in decoding maybe not the best. First, the language model used here is external, still inde-
pendently learned to the translation model, thus the two models may not cooperate well by a simple
interpolation mechanism (even conflict). Additionally, the language model is only included in de-
coding, which is not considered in training. This leads to the inconsistency of training and decoding,
which may harm the performance.

In this paper, we propose the mirror-generative NMT (MGNMT) to address the aforementioned
problems for effectively exploiting non-parallel data in NMT. MGNMT is proposed to jointly train
translation models (i.e., TMx!y and TMy!x) and language models (i.e., LMx and LMy) in a unified
framework, which is non-trivial. Inspired by generative NMT (Shah & Barber, 2018), we propose to
introduce a latent semantic variable z shared between x and y. Our method exploits the symmetry,
or mirror property, in decomposing the conditional joint probability p(x, y|z), namely:

log p(x, y|z) = log p(x|z) + log p(y|x, z) = log p(y|z) + log p(x|y, z)

=
1

2
[log p(y|x, z)| {z }

src2tgt TMx!y

+ log p(y|z)| {z }
target LMy

+ log p(x|y, z)| {z }
tgt2src TMy!x

+ log p(x|z)| {z }
source LMx

] (1)

The graphical model of MGNMT is illustrated in Figure 1. MGNMT aligns the bidirectional trans-
lation models as well as language models in two languages through a shared latent semantic space
(Figure 2), so that all of them are relevant and become conditional independent given z. In such
case, MGNMT enables following advantages:

(i) For training, thanks to z as a bridge, TMy!x and TMx!y are not independent, thus ev-
ery updating of one direction will directly benefit the other direction. This improves the
efficiency of using non-parallel data. (Section 3.1)

(ii) For decoding, MGNMT could naturally take advantages of its internal target-side language
model, which is jointly learned with the translation model. Both of them contribute to the
better generation process together. (Section 3.2)

Note that MGNMT is orthogonal to dual learning (He et al., 2016a) and joint back-translation (Zhang
et al., 2018). Translation models in MGNMT are dependent, and the two translation models could
directly promote each other. Differently, dual learning and joint back-translation works in an im-
plicit way, and these two approaches can also be used to further improve MGNMT. The language
models used in dual learning faces the same problem as Gulcehre et al. (2015). Given GNMT, the
proposed MGNMT is also non-trivial. GNMT only has a source-side language model, thus it cannot
enhance decoding like MGNMT. Also, in Shah & Barber (2018), they require GNMT to share all the
parameters and vocabularies between translation models so as to utilize monolingual data, which is
not best suited for distant language pairs. We will give more comparison in the related work.

Experiments show that MGNMT achieves competitive performance on parallel bilingual data, while
it does advance training on non-parallel data. MGNMT outperforms several strong baselines in
different scenarios and language pairs, including resource-rich scenarios, as well as resource-poor
circumstances on low-resource language translation and cross-domain translation. Moreover, we
show that translation quality indeed becomes better when the jointly learned translation model and
language model of MGNMT work together. We also demonstrate that MGNMT is architecture-free
which can be applied to any neural sequence model such as Transformer and RNN. These pieces of
evidence verify that MGNMT meets our expectation of fully utilizing non-parallel data.

2

• Relevant TMs & LMs under a unified probabilistic 
framework! 

– Enables the aforementioned advantages

p(x, y |z) = p(y |x, z)p(x |z) = p(x |y, z)p(x |z)



Training w/ parallel data

Published as a conference paper at ICLR 2020

Algorithm 1 Training MGNMT from Non-Parallel Data
Input: (pretrained) MGNMT M(✓) , source monolingual dataset Dx, target monolingual dataset Dy

1: while not converge do
2: Draw source and target sentences from non-parallel data: x(s) ⇠ Dx, y(t) ⇠ Dy

3: Use M to translate x(s) to construct a pseudo-parallel sentence pair hx(s), y(s)
pseui

4: Compute L(x(s); ✓x, ✓yx,�) with hx(s), y(s)
pseui by Equation (5)

5: Use M to translate y(t) to construct a pseudo-parallel sentence pair hx(t)
pseu, y

(t)i
6: Compute L(y(t); ✓y, ✓xy,�) with hx(t)

pseu, y
(t)i by Equation (4)

7: Compute the deviation r✓ by Equation (6)
8: Update parameters ✓ ! ✓ + ⌘r✓
9: end while

3 MIRROR-GENERATIVE NEURAL MACHINE TRANSLATION

We propose the mirror-generative NMT (MGNMT), a novel deep generative model which simulta-
neously models a pair of src2tgt and tgt2src (variational) translation models, as well as a pair of
source and target (variational) language models, in a highly integrated way with the mirror property.
As a result, MGNMT can learn from non-parallel bilingual data, and naturally interpolate its learned
language model with the translation model in the decoding process.

The overall architecture of MGNMT is illustrated graphically in Figure 3. MGNMT models the
joint distribution over the bilingual sentences pair by exploiting the mirror property of the joint
probability: log p(x, y|z) = 1

2 [log p(y|x, z) + log p(y|z) + log p(x|y, z) + log p(x|z)], where the
latent variable z (we use a standard Gaussian prior z ⇠ N (0, I)) stands for the shared semantics
between x and y, serving as a bridge between all the integrated translation and language models.

3.1 TRAINING

3.1.1 LEARNING FROM PARALLEL DATA

We first introduce how to train MGNMT on a regular parallel bilingual data. Given a parallel bilin-
gual sentence pair hx, yi, we use stochastic gradient variational Bayes (SGVB) (Kingma & Welling,
2014) to perform approximate maximum likelihood estimation of log p(x, y). We parameterize the
approximate posterior q(z|x, y;�) = N (µ�(x, y),⌃�(x, y)). Then from Equation (1), we can have
the Evidence Lower BOund (ELBO) L(x, y;✓;�) of the log-likelihood of the joint probability as:

log p(x, y) � L(x, y;✓,�) = Eq(z|x,y;�)[
1

2
{log p(y|x, z; ✓xy) + log p(y|z; ✓y)

+ log p(x|y, z; ✓yx) + log p(x|z; ✓x)}] (2)
�DKL[q(z|x, y;�)||p(z)]

where ✓ = {✓x, ✓yx, ✓y, ✓xy} is the set of the parameters of translation and language models. The
first term is the (expected) log-likelihood of the sentence pair. The expectation is obtained by Monte
Carlo sampling. The second term is the KL-divergence between z’s approximate posterior and prior
distributions. By relying on a reparameterization trick (Kingma & Welling, 2014), we can now
jointly train all the components using gradient-based algorithms.

3.1.2 LEARNING FROM NON-PARALLEL DATA

Since MGNMT has intrinsically a pair of mirror translation models, we design an iterative training
approach to exploit non-parallel data, in which both directions of MGNMT could benefit from the
monolingual data mutually and boost each other. The proposed training process on non-parallel
bilingual data is illustrated in Algorithm 1.

Formally, given non-parallel bilingual sentences, i.e., x(s) from source monolingual dataset Dx =
{x(s)|s = 1...S} and y(t) from target monolingual dataset Dy = {y(t)|t = 1...T}, we aim to
maximize the lower-bounds of the likelihood of their marginal distributions mutually:

log p(x(s)) + log p(y(t)) � L(x(s); ✓x, ✓yx,�) + L(y(t); ✓y, ✓xy,�) (3)

4
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�z[�log p(x, y |z)]
x

y

[q(z |x, y)]
Inference Model

x y

�(x, y)
�(x, y)

+
�

 Sample      from   � �(1, I )

DKL[�(�(x, y), �(x, y) | |�(0,I )]

z(x, y) [p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

Figure 3: Illustration of the architecture of MGNMT.

2 BACKGROUND AND RELATED WORK

Notation Given a pair of sentences from source and target languages, e.g., hx, yi, we denote x as
a sentence of the “source” language, and y as a sentence of the “target” language. Additionally, we
use the terms “source-side” and “target-side” of a translation direction to denote the input and the
output sides of it, e.g., the source-side of the ”tgt2src“ translation is the target language.

Neural machine translation Conventional neural machine translation (NMT) models often adopt
an encoder-decoder framework (Bahdanau et al., 2015) with discriminative learning. Here NMT
models aim to approximate the conditional distribution log p(y|x; ✓xy) over a target sentence y =
hy1, . . . , yLyi given a source sentence x = hx1, . . . , xLxi. Here we refer to such regular NMT
models as discriminative NMT models. Training criterion for a discriminative NMT model is to
maximize the conditional log-likelihood log p(y|x; ✓xy) on abundant parallel bilingual data Dxy =
{x(n), y(n)|n = 1...N} of i.i.d observations.

As pointed out by Zhang et al. (2016) and Su et al. (2018), the shared semantics z between x and
y are learned in an implicit way in discriminative NMT, which is insufficient to model the semantic
equivalence in translation. Recently, Shah & Barber (2018) propose a generative NMT (GNMT) by
modeling the joint distribution p(x, y) instead of p(y|x) with a latent variable z:

log p(x, y|z;✓ = {✓x, ✓xy}) = log p(x|z; ✓x) + log p(y|x, z; ✓xy)

where GNMT models log p(x|z; ✓x) as a source variational language model. Eikema & Aziz (2019)
also propose a similar approach. In addition, Chan et al. (2019) propose a generative insertion-based
modeling for sequence, which also models the joint distribution.

Exploiting non-parallel data for NMT Both discriminative and generative NMT could not di-
rectly learn from non-parallel bilingual data. To remedy this, back-translation and its variants (Sen-
nrich et al., 2016b; Zhang et al., 2018) exploit non-parallel bilingual data by generating synthetic
parallel data. Dual learning (He et al., 2016a; Xia et al., 2017) learns from non-parallel data in a
round-trip game via reinforcement learning, with the help of pretrained language models. Although
these methods have shown their effectiveness, the independence between translation models, and
between translation and language models (dual learning) may lead to inefficiency to utilize non-
parallel data for both training and decoding as MGNMT does. In the meantime, iterative learning
schemes like them could also complement MGNMT.

Some other related studies exploit non-parallel bilingual data by sharing all parameters and vocab-
ularies between source and target languages, by which two translation directions can be updated by
either monolingual data (Dong et al., 2015; Johnson et al., 2017; Firat et al., 2016; Artetxe et al.,
2018; Lample et al., 2018), and GNMT as well in an auto-encoder fashion. However, they may still
fail to apply to distant language pairs (Zhang & Komachi, 2019) such as English-to-Chinese, which
is also verified in our experiments.

Additionally, as aforementioned, integrating language model is another direction to exploit monolin-
gual data (Gulcehre et al., 2015; Stahlberg et al., 2018; Chu & Wang, 2018) for NMT. However, this
kind of methods often resorts to external trained language models, which is agnostic to translation
task. Besides, although GNMT contains a source-side language model, it cannot help decoding. In
contrast, MGNMT jointly learns translation and language modeling probabilistically and can natu-
rally rely on both together for a better generation.
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Algorithm 1 Training MGNMT from Non-Parallel Data
Input: (pretrained) MGNMT M(✓) , source monolingual dataset Dx, target monolingual dataset Dy

1: while not converge do
2: Draw source and target sentences from non-parallel data: x(s) ⇠ Dx, y(t) ⇠ Dy

3: Use M to translate x(s) to construct a pseudo-parallel sentence pair hx(s), y(s)
pseui

4: Compute L(x(s); ✓x, ✓yx,�) with hx(s), y(s)
pseui by Equation (5)

5: Use M to translate y(t) to construct a pseudo-parallel sentence pair hx(t)
pseu, y

(t)i
6: Compute L(y(t); ✓y, ✓xy,�) with hx(t)

pseu, y
(t)i by Equation (4)

7: Compute the deviation r✓ by Equation (6)
8: Update parameters ✓ ! ✓ + ⌘r✓
9: end while

3 MIRROR-GENERATIVE NEURAL MACHINE TRANSLATION

We propose the mirror-generative NMT (MGNMT), a novel deep generative model which simulta-
neously models a pair of src2tgt and tgt2src (variational) translation models, as well as a pair of
source and target (variational) language models, in a highly integrated way with the mirror property.
As a result, MGNMT can learn from non-parallel bilingual data, and naturally interpolate its learned
language model with the translation model in the decoding process.

The overall architecture of MGNMT is illustrated graphically in Figure 3. MGNMT models the
joint distribution over the bilingual sentences pair by exploiting the mirror property of the joint
probability: log p(x, y|z) = 1

2 [log p(y|x, z) + log p(y|z) + log p(x|y, z) + log p(x|z)], where the
latent variable z (we use a standard Gaussian prior z ⇠ N (0, I)) stands for the shared semantics
between x and y, serving as a bridge between all the integrated translation and language models.

3.1 TRAINING

3.1.1 LEARNING FROM PARALLEL DATA

We first introduce how to train MGNMT on a regular parallel bilingual data. Given a parallel bilin-
gual sentence pair hx, yi, we use stochastic gradient variational Bayes (SGVB) (Kingma & Welling,
2014) to perform approximate maximum likelihood estimation of log p(x, y). We parameterize the
approximate posterior q(z|x, y;�) = N (µ�(x, y),⌃�(x, y)). Then from Equation (1), we can have
the Evidence Lower BOund (ELBO) L(x, y;✓;�) of the log-likelihood of the joint probability as:

log p(x, y) � L(x, y;✓,�) = Eq(z|x,y;�)[
1

2
{log p(y|x, z; ✓xy) + log p(y|z; ✓y)

+ log p(x|y, z; ✓yx) + log p(x|z; ✓x)}] (2)
�DKL[q(z|x, y;�)||p(z)]

where ✓ = {✓x, ✓yx, ✓y, ✓xy} is the set of the parameters of translation and language models. The
first term is the (expected) log-likelihood of the sentence pair. The expectation is obtained by Monte
Carlo sampling. The second term is the KL-divergence between z’s approximate posterior and prior
distributions. By relying on a reparameterization trick (Kingma & Welling, 2014), we can now
jointly train all the components using gradient-based algorithms.

3.1.2 LEARNING FROM NON-PARALLEL DATA

Since MGNMT has intrinsically a pair of mirror translation models, we design an iterative training
approach to exploit non-parallel data, in which both directions of MGNMT could benefit from the
monolingual data mutually and boost each other. The proposed training process on non-parallel
bilingual data is illustrated in Algorithm 1.

Formally, given non-parallel bilingual sentences, i.e., x(s) from source monolingual dataset Dx =
{x(s)|s = 1...S} and y(t) from target monolingual dataset Dy = {y(t)|t = 1...T}, we aim to
maximize the lower-bounds of the likelihood of their marginal distributions mutually:

log p(x(s)) + log p(y(t)) � L(x(s); ✓x, ✓yx,�) + L(y(t); ✓y, ✓xy,�) (3)
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where L(x(s); ✓x, ✓yx,�) and L(y(t); ✓y, ✓xy,�) are the lower-bounds of the source and target
marginal log-likelihoods, respectively.

Let us take L(y(t); ✓y, ✓xy,�) for example. Inspired by Zhang et al. (2018), we sample x with
p(x|y(t)) in source language as y(t)’s translation (i.e., back-translation) and obtain a pseudo-parallel
sentence pair hx, y(t)i. Accordingly, we give the form of L(y(t); ✓y, ✓xy,�) in Equation (4). Like-
wise, Equation (5) is for L(y(t); ✓y, ✓xy,�). (See Appendix for the their derivation).

L(y(t); ✓y, ✓xy,�) = Ep(x|y(t))

⇥
Eq(z|x,y(t);�)[

1

2
{log p(y(t)|z; ✓y) + log p(y(t)|x, z; ✓xy)}]

�DKL[q(z|x, y(t);�)||p(z)]
⇤

(4)

L(x(s); ✓x, ✓yx,�) = Ep(y|x(s))

⇥
Eq(z|x(s),y;�)[

1

2
{log p(x(s)|z; ✓x) + log p(x(s)|y, z; ✓yx)}]

�DKL[q(z|x(s), y;�)||p(z)]
⇤

(5)

The parameters included in Equation (3) can be updated via gradient-based algorithm, where the
deviations are computed as Equation (6) in a mirror and integrated behavior:

r✓ = r{✓x,✓yx}L(x
(s); ·) +r{✓y,✓xy}L(y

(t); ·) +r�[L(x(s); ·) + L(y(t); ·)] (6)

The overall training process of exploiting non-parallel data does to some extent share a similar idea
with joint back-translation (Zhang et al., 2018). But they only utilize one side of non-parallel data to
update one direction of translation models for each iteration. Thanks to z from the shared approxi-
mate posterior q(z|x, y;�) as a bridge, both directions of MGNMT could benefit from either of the
monolingual data. Besides, MGNMT’s “back-translated” pseudo translations have been improved
by advanced decoding process (see Equation (7)), which leads to a better learning effect.

3.2 DECODING

Thanks to simultaneously modeling of translation models and language models, MGNMT is now
able to generate translation by the collaboration of translation and language models together. This
endows MGNMT’s translation in target-side language with more domain-related fluency and quality.

Due to the mirror nature of MGNMT, the decoding process is also of symmetry: given a source
sentence x (or target sentence y), we want to find a translation by y = argmaxy p(y|x) =
argmaxy p(x, y) (x = argmaxx p(x|y) = argmaxx p(x, y)), which is approximated by a mir-
ror variant of the idea of EM decoding algorithm in GNMT (Shah & Barber, 2018). Our decoding
process is illustrated in Algorithm 2.

Let’s take the srg2tgt translation as example. Given a source sentence x, 1) we first sam-
ples an initial z from the standard Gaussian prior and then obtain an initial draft translation as
ỹ = argmaxy p(y|x, z); 2) this translation is iteratively refined by re-sampling z this time from the
approximate posterior q(z|x, ỹ;�), and re-decoding with beam search by maximizing the ELBO:
ỹ  argmaxy L(x, ỹ;✓,�)

= argmaxy Eq(z|x,ỹ;�)[log p(y|x, z) + log p(y|z) + log p(x|z) + log p(x|y, z)] (7)

= argmaxy Eq(z|x,ỹ;�)
⇥X

i

[log p(yi|y<i, x, z) + log p(yi|y<i, z)]| {z }
Decoding Score

+ log p(x|z) + log p(x|y, z)| {z }
Reconstructive Reranking Score

⇤

The decoding scores at each step are now given by TMx!y and LMy, which is helpful to find a sen-
tence y not only being the translation of x but also being more possible in the target language2. The
reconstructive reranking scores are given by LMx and TMy!x, which are employed after translation
candidates are generated. MGNMT can leverage this kind of scores to sort the translation candidates
and determine the most faithful translation to the source sentence. It is to essentially share the same
idea as Ng et al. (2019), which propose a neural noisy channel reranking to incorporate reconstruc-
tive score to rerank the translation candidates. Some studies like Tu et al. (2017), Cheng et al. (2016)
also exploit this bilingual semantic equivalence as reconstruction regularization for training.

2Empirically, we find that using log p(yi|y<i, x, z) + � log p(yi|y<i, z) with a coefficient � ⇡ 0.3 leads to
more robust results, which shares the similar observations with Gulcehre et al. (2015).
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Decoding: TM&LM work as a whole
Decoding: Collaboration of TM&LM

With MGnmt, the dependent TMs and LMs can now work together for better generation.

I Given a source sentence x , we want to find a translation by
y = argmaxy p(y |x) = argmaxy p(x , y) ⇡ argmaxy L(x , y ;✓, �).

I Mirror EM decoding: a mirror variant of the idea of EM decoding algorithm in
Gnmt (Shah and Barber, 2018).
Initialization: we first samples an initial z from the standard Gaussian prior and then obtain an

initial draft translation as ỹ = argmaxy p(y |x , z);

Iterative Refinement: this translation is iteratively refined by re-sampling z this time from the
approximate posterior q(z |x , ỹ ;�), and re-decoding with beam search by maximizing the
ELBO:

ỹ  argmaxy L(x , ỹ ;✓, �)

= argmaxy Eq(z|x,ỹ ;�)[log p(y |x , z) + log p(y |z) + log p(x |z) + log p(x |y , z)]

= argmaxy Eq(z|x,ỹ ;�)

⇥ X

i

[log p(yi |y<i , x , z) + log p(yi |y<i , z)]| {z }
Decoding Score

+ log p(x |z) + log p(x |y , z)
| {z }

Reconstructive Reranking Score

⇤

Zheng et al. (NJU & ByteDance) iclr20 31 Mar, 2020 20 / 34

Published as a conference paper at ICLR 2020

where L(x(s); ✓x, ✓yx,�) and L(y(t); ✓y, ✓xy,�) are the lower-bounds of the source and target
marginal log-likelihoods, respectively.

Let us take L(y(t); ✓y, ✓xy,�) for example. Inspired by Zhang et al. (2018), we sample x with
p(x|y(t)) in source language as y(t)’s translation (i.e., back-translation) and obtain a pseudo-parallel
sentence pair hx, y(t)i. Accordingly, we give the form of L(y(t); ✓y, ✓xy,�) in Equation (4). Like-
wise, Equation (5) is for L(y(t); ✓y, ✓xy,�). (See Appendix for the their derivation).

L(y(t); ✓y, ✓xy,�) = Ep(x|y(t))

⇥
Eq(z|x,y(t);�)[

1

2
{log p(y(t)|z; ✓y) + log p(y(t)|x, z; ✓xy)}]

�DKL[q(z|x, y(t);�)||p(z)]
⇤

(4)

L(x(s); ✓x, ✓yx,�) = Ep(y|x(s))

⇥
Eq(z|x(s),y;�)[

1

2
{log p(x(s)|z; ✓x) + log p(x(s)|y, z; ✓yx)}]

�DKL[q(z|x(s), y;�)||p(z)]
⇤

(5)

The parameters included in Equation (3) can be updated via gradient-based algorithm, where the
deviations are computed as Equation (6) in a mirror and integrated behavior:

r✓ = r{✓x,✓yx}L(x
(s); ·) +r{✓y,✓xy}L(y

(t); ·) +r�[L(x(s); ·) + L(y(t); ·)] (6)

The overall training process of exploiting non-parallel data does to some extent share a similar idea
with joint back-translation (Zhang et al., 2018). But they only utilize one side of non-parallel data to
update one direction of translation models for each iteration. Thanks to z from the shared approxi-
mate posterior q(z|x, y;�) as a bridge, both directions of MGNMT could benefit from either of the
monolingual data. Besides, MGNMT’s “back-translated” pseudo translations have been improved
by advanced decoding process (see Equation (7)), which leads to a better learning effect.

3.2 DECODING

Thanks to simultaneously modeling of translation models and language models, MGNMT is now
able to generate translation by the collaboration of translation and language models together. This
endows MGNMT’s translation in target-side language with more domain-related fluency and quality.

Due to the mirror nature of MGNMT, the decoding process is also of symmetry: given a source
sentence x (or target sentence y), we want to find a translation by y = argmaxy p(y|x) =
argmaxy p(x, y) (x = argmaxx p(x|y) = argmaxx p(x, y)), which is approximated by a mir-
ror variant of the idea of EM decoding algorithm in GNMT (Shah & Barber, 2018). Our decoding
process is illustrated in Algorithm 2.

Let’s take the srg2tgt translation as example. Given a source sentence x, 1) we first sam-
ples an initial z from the standard Gaussian prior and then obtain an initial draft translation as
ỹ = argmaxy p(y|x, z); 2) this translation is iteratively refined by re-sampling z this time from the
approximate posterior q(z|x, ỹ;�), and re-decoding with beam search by maximizing the ELBO:
ỹ  argmaxy L(x, ỹ;✓,�)

= argmaxy Eq(z|x,ỹ;�)[log p(y|x, z) + log p(y|z) + log p(x|z) + log p(x|y, z)] (7)

= argmaxy Eq(z|x,ỹ;�)
⇥X

i

[log p(yi|y<i, x, z) + log p(yi|y<i, z)]| {z }
Decoding Score

+ log p(x|z) + log p(x|y, z)| {z }
Reconstructive Reranking Score

⇤

The decoding scores at each step are now given by TMx!y and LMy, which is helpful to find a sen-
tence y not only being the translation of x but also being more possible in the target language2. The
reconstructive reranking scores are given by LMx and TMy!x, which are employed after translation
candidates are generated. MGNMT can leverage this kind of scores to sort the translation candidates
and determine the most faithful translation to the source sentence. It is to essentially share the same
idea as Ng et al. (2019), which propose a neural noisy channel reranking to incorporate reconstruc-
tive score to rerank the translation candidates. Some studies like Tu et al. (2017), Cheng et al. (2016)
also exploit this bilingual semantic equivalence as reconstruction regularization for training.

2Empirically, we find that using log p(yi|y<i, x, z) + � log p(yi|y<i, z) with a coefficient � ⇡ 0.3 leads to
more robust results, which shares the similar observations with Gulcehre et al. (2015).
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• Datasets 
– Low resource 

‣ WMT16 EN-RO 

‣ IWSLT16 EN-DE: domain adaptation (from TED to 
News) 

– High resource:  
‣ WMT14 EN-DE, NIST EN-ZH 

• Avoiding posterior collapse (Important!) 
– KL-annealing 
– Word dropout
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Table 2: Statistics of the training datasets for each translation tasks. These values of DKL[q(z)||p(z)]
are to some extent large, which means that MGNMT does rely on the latent variable.

Dataset WMT14 EN$DE NIST EN$ZH WMT16 EN$RO IWSLT16 EN$DE

KL-annealing steps 35k 13.5k 8k 4k
DKL[q(z)||p(z)] 6.78 8.26 6.36 7.81

Table 3: BLEU scores on low-resource translation (WMT16 EN$RO), and cross-domain translation
(IWSLT EN$DE).

Model
LOW-RESOURCE CROSS-DOMAIN
WMT16 EN$RO IN-DOMAIN (TED) OUT-DOMAIN (NEWS)
EN-RO RO-EN EN-DE DE-EN EN-DE DE-EN

Transformer (Vaswani et al., 2017) 32.1 33.2 27.5 32.8 17.1 19.9
GNMT (Shah & Barber, 2018) 32.4 33.6 28.0 33.2 17.4 20.1
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 34.1 35.3 28.4 33.7 22.0 24.9
Transformer+BT + non-parallel (Sennrich et al., 2016b) 33.9 35.0 27.8 33.3 20.9 24.3
Transformer+JBT + non-parallel (Zhang et al., 2018) 34.5 35.7 28.4 33.8 21.9 25.1
Transformer+Dual + non-parallel (He et al., 2016a) 34.6 35.7 28.5 34.0 21.8 25.3
MGNMT 32.7 33.9 28.2 33.6 17.6 20.2
MGNMT + non-parallel 34.9 36.1 28.5 34.2 22.8 26.1

4.1 RESULTS AND DISCUSSION

As shown in Table 3 and Table 4, MGNMT outperforms our competitive Transformer base-
line (Vaswani et al., 2017), Transformer-based GNMT (Shah & Barber, 2018) and related work
in both resource-poor scenarios and resource-rich scenarios.

MGNMT makes better use of non-parallel data. As shown in Table 3, MGNMT outperforms
our competitive Transformer baseline (Vaswani et al., 2017), Transformer-based GNMT (Shah &
Barber, 2018) and related work in both resource-poor scenarios.

1. On low-resource language pairs. The proposed MGNMT obtains a bit improvement over Trans-
former and GNMT on the scarce bilingual data. Large margins of improvement are obtained by
exploiting non-parallel data.
2. On cross-domain translation. To evaluate the capability of our model in the cross-domain set-
ting, we first trained our model on TED data from IWSLT benchmark as in-domain training, and then
exposed the model to out-of-domain NEWS non-parallel bilingual data from News Crawl to access-
ing out-domain knowledge. As shown in Table 3, being invisible to out-domain training data leads to
poor performance in out-domain testset of both Transformer and MGNMT. In this case, out-domain
non-parallel data contributes significantly, leading to 5.7⇠6.4 BLEU gains. We also conduct a case
study on the cross-domain translation in Appendix.
3. On Resource-rich scenarios. We also conduct regular translation experiments on two resource-
rich language pairs, i.e., EN$DE and NIST EN$ZH. As shown in Table 4, MGNMT can obtain
comparable results compared to discriminative baseline RNMT and generative baseline GNMT on
pure parallel setting. Our model can also achieve better performance by the aid of non-parallel
bilingual data than the compared previous approaches, consistent with the experimental results in
resource-poor scenarios.
4. Comparison to other semi-supervised work. We compare our approach with well-established
approaches which are also designed for leveraging non-parallel data, including back-translation
(Sennrich et al., 2016b, Transformer+BT), joint back-translation training (Zhang et al., 2018, Trans-
former+JBT), multi-lingual and semi-supervised variant of GNMT (Shah & Barber, 2018, GNMT-
M-SSL), and dual learning (He et al., 2016a, Transformer+Dual). As shown in Table 3, while
introducing non-parallel data to either low-resource language or cross-domain translation, all listed
semi-supervised approaches gain substantial improvements. Among them, our MGNMT achieves
the best BLEU score. Meanwhile, in resource-rich language pairs, the results are consistent. We
suggest that because the jointly trained language model and translation model could work coordi-
nately for decoding, MGNMT surpasses joint back-translation and dual learning. Interestingly, we
can see that the GNMT-M-SLL performs poorly on NIST EN$ZH, which means parameters-sharing
is not quite suitable for distant language pair. These results indicate its promising strength of boost-
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Table 4: BLEU scores on resource-rich language pairs.

Model WMT14 NIST
EN-DE DE-EN EN-ZH ZH-EN

Transformer (Vaswani et al., 2017) 27.2 30.8 39.02 45.72
GNMT (Shah & Barber, 2018) 27.5 31.1 40.10 46.69
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 29.7 33.5 41.73 47.70
Transformer+BT + non-parallel (Sennrich et al., 2016b) 29.6 33.2 41.98 48.35
Transformer+JBT + non-parallel (Zhang et al., 2018) 30.0 33.6 42.43 48.75
Transformer+Dual + non-parallel (He et al., 2016b) 29.6 33.2 42.13 48.60
MGNMT 27.7 31.4 40.42 46.98
MGNMT + non-parallel 30.3 33.8 42.56 49.05

Figure 4: BLEU vs. scales of non-
parallel data on IWSLT EN$DE tasks.

Figure 5: BLEU increments vs. adding one side mono-
lingual (w/o interactive training) or non-parallel bilin-
gual data for MGNMT on IWSLT EN$DE tasks.

ing low-resource translation and exploiting domain-related knowledge from non-parallel data for
cross-domain scenarios.

Table 5: Incorporating LM for decoding
(IWSLT task).

Model EN-DE DE-EN

MGNMT: dec. w/o LM 21.2 24.6
MGNMT: dec. w/ LM 22.8 26.1
Transformer 17.1 19.9
Transformer+LM-FUSION 18.4 21.1

MGNMT is better at incorporating language
model in decoding In addition, we find from Ta-
ble 5 that simple interpolation of NMT and exter-
nal LM (separately trained on target-side mono-
lingual data) (Gulcehre et al., 2015, Transformer-
LM-FUSION) only produces mild effects. This can
be attributed to the unrelated probabilistic model-
ing, which means that a more naturally integrated
solution like MGNMT is necessary.

Table 6: Comparison with NCMR (IWSLT task).

Model EN-DE DE-EN

MGNMT + non-parallel 22.8 26.1
Transformer+BT w/ NCMR (w/o) 21.8 (20.9) 25.1 (24.3)
GNMT-M-SSL w/ NCMR (w/o) 22.4 (22.0) 25.6 (24.9)

Comparison with noisy channel model
reranking (Ng et al., 2019) We com-
pare MGNMT with the noisy channel
model reranking (Ng et al., 2019, NCMR).
NCMR uses log p(y|x) + �1 log p(x|y) +
�2 log p(y) to rerank the translation candi-
dates obtained from beam search, where �1 = 1 and �2 = 0.3, which are similar to our decoding
setting. As shown in Table 6, NCMR is indeed effective and easy-to-use. But MGNMT still works
better. Specifically, the advantage of the unified probabilistic modeling in MGNMT not only im-
proves the effectiveness and efficiency of exploiting non-parallel data for training, but also enables
the use of the highly-coupled language models and bidirectional translation models at testing time.

Effects of non-parallel data. We conduct experiments regarding the scales of non-parallel data on
IWSLT EN$DE to investigate the relationship between benefits and data scales. As shown in Fig-
ure 4, as the amount of non-parallel data increases, all models become strong gradually. MGNMT
outperforms Transformer+JBT consistently in all data scales. Nevertheless, the growth rate de-
creases probably due to noise of the non-parallel data. We also investigate if one side of non-parallel
data could benefit both translation directions of MGNMT. As shown in Figure 5, we surprisingly
find that only using one side monolingual data, for example, English, could also improve English-
to-German translation a little bit, which meets our expectation.
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– Non-parallel data is helpful  
– MGNMT works well especially on low resource 
settings



• Solving data scarcity 
– BERT for NMT [Yang et al, AAAI 2020] 
– Mirror Generative NMT [Zheng et al ICLR 2020a] 

• Enhancing discourse coherence 
– Document-to-document translation [Sun et al, 2020, in submission] 

• Speedup and Scaling NMT 
– Capsule NMT [Wang et al, EMNLP 2019] 
– Non-autoregressive NMT [Wang et al, ACL 2019] 
– Human-machine co-operative translation, CAMIT [Weng et al, 

IJCAI 2019] 
• Cross-modal Translation  

– Visually guided MT [Wang et al, ICCV 2019]
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Part II Takeaway

•MGNMT is a unified probabilistic framework which jointly 
models TMs and LMs and enables their cooperation in a 
better way. 

• In low-resource settings, MGNMT works better than in high-
resource settings 

• Training of MGNMT is somewhat tricky and inefficient  
• Could be extended to multilingual or unsupervised 

scenarios.  
• ByteTrans system already serves > 100million active users



1. Overview of Intelligent Information 
Assistant 

2. Learning disentangled latent 
representation for text 

3. Mirror-Generative NMT 
4. Multimodal machine writing 
5. Summary and Future Directions
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Multimodal Machine Writing

GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, 
M. Jiang, IJCAI19b] 

Jersey Number Recognition with Semi-Supervised Spatial 
Transformer Network [G. Li, S. Xu, X. Liu, Lei Li, C. 

Wang, CVPR-CVS18]



Winning 2017 Wu Wen-tsün Award in AI from CAAI 
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Xiaomingbot  
Automatic News Writing System

580,000 
articles

150,000  
followers

6 
lang



Lei Li, Han Zhang, Lifeng Hua, Jiaze Chen, Ying Zeng, Yuzhang Du, Yujie Li,  
Shikun Xu, Gen Li, Zhenqi Xu, Yandong Zhu, Siyi Gao, Changhu Wang, Weiying Ma
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Soccer News Generation from Multimodal Data
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Snooker Commentary Generation 
Combining Visual Understanding with Strategy Prediction

GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, M. Jiang, IJCAI19b] 
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AI Writing for Under-developed Region

Gulin, Sichuan

Till 2018/7/15
Sold 27.5 tons of plum 

on Toutiao

Xiahe, Gansu

Boost beef selling by 
4x after promotion on 

Toutiao

Promote Rural 
Products on 

Toutiao

Help farmers from rural countryside to sell agriculture products 
and promote culture through Toutiao and Douyin. 
Certain product articles are semi-automatically generated by AI.
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The Xiaoming Multilingual Reporter 
News Writing + Summarization + Translation + TTS w/ 

Speech Cloning



• Goal: building intelligent information assistant 
• Disentangled Latent Representation 

– VTM: Learning Latent Templates in Variational Space 
– DSS-VAE: Disentangled syntax and semantic representation 

• MGNMT:  
– integrate four language capabilities together 
– Utilize both parallel and non-parallel corpus 

• Multimodal Machine Writing 
– Xiaomingbot system: 600k articles and 150k followers 

• Deployed in multiple online platforms and used by over 
100 millions of users
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Summary



• We are hiring researchers, software 
engineers, and interns at Silicon Valley, 
Beijing, Shanghai. 

• contact: lileilab@bytedance.com
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