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• New media platforms 

• Tremendous improvement in the efficiency 
and quality of content creation 

• Massive distribution of personalized 
information

2

Revolution in Information  
Creation and Sharing
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AI for Information Creation and Sharing

AI 
Technology

Information 
Creation & 

Sharing
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AI for Information Creation and Sharing

AI 
Technology

Information 
Creation & 

Sharing

Automated 
news writing

Sharing Content 
Globally

Filtering 
Misinformation

Natural Lang. 
Generation

Machine 
Translation
Classification/
Graph Neural Nets/
GANs
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Why is NLG important?

Machine Translation ChatBOT 

Question AnsweringMachine Writing
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Machine Translation
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AI to Improve Writing
Text generation to 

rescue! 
Gmail smart compose, smart reply.



8



9

Automated News Writing

Xiaomingbot is 
deployed and 

constantly 
producing news 
on social media 

platforms 
(Toutiao & 
TopBuzz).
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human 
written

GPT3, 
edited 

by  
human
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A New Working Style for Authors 
Human-AI Co-authoring



1. Basics of Deep Generative Models for 
Sequences  

2. Deep Latent Variable Models 
3. Monte-Carlo Methods for Constrained Text 

Generation 
4. Multimodal machine writing: show case 
5. Summary
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Outline



Basics of Deep Generative 
Models for Sequences

How to generate a sentence?
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Modeling a Sequence
The quick brown fox jumps over the lazy dog    .

x = ( x1 , x2 , x3 , x4, x5 , x6 , x7, x8, x9, x10)

pθ(x) = pθ(x1, ⋯, xL)

 The central problem of language modeling 
is to find the joint probability distribution:

There are many ways to represent and learn 
the joint probability model.



DGM Taxonomy

Maximum Likelihood Estimation

VAE 
VTM

GAN

pθ(x) ⟷ pdata(x)

RNN, LSTM 
Transformer

Adversarial Learning

Explicit Density

Auto-
Regressive 

Factorization

Intractable DensityTractable Density

Parallel 
Factorization

Markov 
Factorization

Markov 
Transformer

Glancing 
Transformer 

NAT

Latent 
Variable Model

Implicit Density

Energy-based

Conditional 
EBM

CGMH 
MHA 

TSMH

Constrained 
PM

GSN
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Auto-Regressive Language Model
Decompose the joint distribution as a product 
of tractable conditional probabilities: 

Given x = [x1, x2, x3 . . . , xn]

pθ =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)

x1 x2 x3 x4 x5
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Auto-Regressive Factorization -  
Token Probability from a Neural Network

x1 x2 x3 x4

x5
pθ(xi |x<i) = Softmax (fθ(x<i))xi

Softmax(x)j =
exp xj

∑k exp xk

pθ(x5 |x1, x2, x3, x4)
The quick brown fox

jumps
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Auto-Regressive Factorization 
Parameterization by RNN/LSTM

<BOS>

…

x1 x2 x3

x2 x3

x4 xn

<EOS>x1 x4 x5
Softmax

pθ(xi |x<i)

it+1

ft+1
ot+1
at+1

=
σ
σ
σ

tanh
⊙ (M ⋅ (xt+1

ht) + b)
ct+1 = ft+1 ⊗ ct + it+1 ⊗ at+1

ht+1 = ot+1 ⊗ tanh(c + t + 1)

𝑜𝑡+1

𝑓𝑡+1

𝑖𝑡+1

h𝑡

𝑥𝑡+1 h𝑡+1

h𝑡𝑥𝑡+1 h𝑡𝑥𝑡+1

h𝑡 𝑥𝑡+1

Forget 

Output Input 

Memory 

𝑐𝑡𝑐𝑡+1

Adaptively memorize short and 
long term information
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Auto-Regressive Factorization 
Parameterization by Transformer

Input 
Tokens

Output 
Tokens

12x

Token 
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Feed Forward

Add & Norm

Add & Norm

Masked 
Multi-Head 
Attention

Linear

Softmax

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

Q K V

Scaled Dot-Product Attention

Q

Scaled Dot-Product 
Attention

Linear Linear LinearLinear Linear Linear

Concat

Linear

h

K V

Multi-Head 

GPT, GPT2, and GPT3
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What is Softmax essentially 
Computing?

pθ(xi |x<i)

<BOS>

…

x1 x2 x3

x2 x3

x4 xn

<EOS>x1 x4 x5

apple

amazon

pear

…
…

Word Embeddings

inner-product

0.8

0.01

0.02

…

Word  
Probability

tiger

softmax

softmax
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Training Objective

min 𝔼x∼pdata [−log pθ(x)]
pθ(x) =

n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)

Parameterization by RNN/LSTM/Transformer

Maximum Likelihood Estimation (or Cross-Entropy loss):
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Training: Back-propagation Algorithm

<BOS>

…

x1 x2 x3

x2 x3

x4 xn

<EOS>x1 x4 x5

apple

amazon

pear

…
…

0.8

0.01

0.02

…
tiger

1

0

0

…

Cross Entropy 
Loss



aka. sequence-to-sequence generation 
• Machine Translation 
• Dialog Generation 
• Question Answering 
• … 
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Conditional Sequence Generation

pθ(y |x)

敏捷的棕狐跳过懒狗

The quick brown fox jumps over the lazy dog    .

Output

Input
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Conditional Sequence Generation

min 𝔼x∼pdata [−log pθ(y |x)]
pθ(y |x) =

n

∏
i=1

pθ(yi |y1, y2, . . . , yi−1, x) =
n

∏
i=1

pθ(yi |y<i, x)

Parameterization by Transformer 
or LSTM-seq2seq

Maximum Likelihood Estimation (or Cross-Entropy loss):
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Conditional Sequence Generation

<BOS>

…

x1 x2 x3 x4 xn

<EOS>

<BOS>

…

y1 y2 y3

y2 y3

y4 ym

<EOS>y1 y4 y5

Decoder

Encoder
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Conditional Sequence Generation

Decoder

Encoder

Attention

pθ(y |x)

<BOS>

…

x1 x2 x3 x4 xn

<EOS>

<BOS>

…

y1 y2 y3

y2 y3

y4 ym

<EOS>y1 y4 y5
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Conditional Sequence Generation

Decoder

Encoder

Attention

<BOS>

…

x1 x2 x3 x4 xn

<EOS>

<BOS>

…

y1 y2 y3

y2 y3

y4 ym

<EOS>y1 y4 y5
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Multi-Head 
Attention

Add & Norm

Input 
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Inputs

N x

Feed Forward

Add & Norm

Output 
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm

Masked 
Multi-Head 
Attention

Linear

Softmax

Output 
Probabilities

Outputs 
(shifted right)

x N

Transformer 

Vaswani et al., Attention is all you need, in NIPS, 2017.

Transformer abandons  
RNN by using  

Multi-head Self-Attention!
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Multi-Head 
Attention

Add & Norm

Input 
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.
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Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.
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The Decoding Problem

log pθ(x |y) =
n

∑
i=1

log pθ(xi |x1, x2, . . . , xi−1, y) =
n

∑
i=1

log pθ(xi |x<i, y)

Decoding space is 
still exponential 
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Approximate Decoding: Beam Search

log pθ(x |y) =
n

∑
i=1

log pθ(xi |x1, x2, . . . , xi−1, y) =
n

∑
i=1

log pθ(xi |x<i, y)

Heuristic decoding 
by beam search: 
keeping k-best at 

each step and 
incrementally 

updating 
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Machine Translation Performance

Attention is all you need, Vaswani et al, NIPS 2017

Though no long the state-of-the-art result today, 
Transformer is the default backbone model.



1. Basics of Deep Generative Models for 
Sequences  

2. Deep Latent Variable Models 
3. Monte-Carlo Methods for Constrained Text 

Generation 
4. Multimodal machine writing: show case 
5. Summary
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Outline



Deep Latent Variable 
Models for Text

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b] 
DSS-VAE [Y. Bao, H. Zhou, S. Huang, Lei Li, L. Mou, 

O. Vechtomova, X. Dai, J. Chen, ACL19c] 
DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 
MGNMT [Z. Zheng, H. Zhou, S. Huang, Lei Li, X. Dai, 

J. Chen, ICLR 2020a]



• Disentangled Representation Learning for 
Text Generation 

• Interpretable Deep Latent Representation 
from Raw Text 

• Mirror Generative Model for Neural 
Machine Translation

35

Outline
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Natural Language Descriptions

Sukiyaki is a Japanese 
restaurant. It is a 
pub and it has a 
average cost and 
good rating. It is 
based in seattle.

name Sukiyaki

eatType pub

food Japanese

price average

rating good

area seattle
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Data to Text Generation

Style long dress

Painting bamboo ink

Texture poplin
Feel smooth

Made of poplin, this long dress has 
an ink painting of bamboo and 
feels fresh and smooth.

[1] The E2E Dataset: New Challenges For End-to-End Generation. https://github.com/tuetschek/e2e-dataset
[2] Can Neural Generators for Dialogue Learn Sentence Planning and Discourse Structuring?. https://nlds.soe.ucsc.edu/sentence-planning-
NLG

SentenceData Table 
<key, value>

Sia Kate Isobelle Furler (born 
18 December 1975) is an 

Australian singer, songwriter, 
voice actress and music 

video director.

Name: Sia Kate Isobelle 
Furler 
DoB: 12/18/1975 
Nationality: Australia 
Occupation: Singer, 
Songwriter

Medical 
Reports

Fashion 
Product 

Description

Person 
Biography

The blood pressure is higher than 
normal and may expose to the 

risk of hypertension 

https://github.com/tuetschek/e2e-dataset
https://nlds.soe.ucsc.edu/sentence-planning-NLG
https://nlds.soe.ucsc.edu/sentence-planning-NLG


• Inference: 
– Given: table data , as key-position-value triples.  
– e.g. Name: Jim Green => (Name, 0, Jim), (Name, 1, 

Green) 
– Output: fluent, accurate and diverse text 

sequences  
• Training: 

– : pairs of table data and text. 

– : raw text corpus. 

x

y

{⟨xi, yi⟩}N
i=1

{yj}M
j=1 M ≫ N

38

Problem Setup



• Desired Properties:  
– Accuracy: semantically consistent with the 

content in the table 
– Diversity: Ability to generate infinite varying 

utterances 
• Scalability: real-time generation, latency, 

throughput (QPS) 
• Training: limited table-text pairs 

39

Why is Data-to-Text Hard?
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Previous Idea: Templates

name Sukiyaki

eatType pub

food Japanese

price average

rating good

area seattle

Sukiyaki is a Japanese 
restaurant. It is a 
pub and it has a 
average cost and 

good rating. It is in 
seattle.

[name] is a [food] restaurant. 
It is a [eatType] and it has 
a [price] cost and [rating] 

rating. It is in [area].

But manually creation of 
templates are tedious 



Raw text

Motivation 2: 
   Incorporate raw text 
corpus to learn good 
representation.

41

Our Motivation for 
Variational Template Machine

Motivation 1: 
   Continuous and 
disentangled 
representation for 
template and content

Template

Content
Table

Sentence

q (template, 
content | 
sentence)

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b]
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Variational Template Machine

zc

y

xtable 
data

text

template 
variable

content 
variable

Input: triples of <field_name, 
position, value> 

   

1. Neural Net 
 

2. Sample , e.g. 
Gaussian 

3. Decode  from  using 
another NN (e.g. 
Transformer)

{x f
k , xp

k , xv
k}K

k=1

p(c |x) ∼
maxpool(tanh(W ⋅ [xk

f , xk
p, xk

v] + b))
z ∼ p0(z)

y [c, z]

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b]



Key idea: Disentangling 
content and templates while 
preserving as much 
information as possible! 
Total loss = 

Reconstruction loss 

+ 
Information-Preserving loss 

Training VTM

zc

y

xtable 
data

text

template 
variable

content 
variable
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Variational Inference

zc

y

xtable 
data

text

template 
variable

content 
variable

Instead of optimizing exact and 
intractable expected likelihood, 
minimizing the (tractable) 
variational lower bounds.

      

𝑙𝑝  = −E log∫ 𝑝(𝑦 𝑐(𝑥), 𝑧)𝑝(𝑧)dz

ELBOp = − E𝑞(𝑧 𝑦)log𝑝(𝑦 𝑐(𝑥), 𝑧) + KL[𝑞(𝑧 |𝑦) | |𝑝(𝑧)]

𝑙𝑟  = −E log∬ 𝑝(𝑦 𝑐, 𝑧)𝑝(𝑧)𝑝(𝑐)dzd𝑐

ELBOr = − E𝑞(𝑧 𝑦)𝑞(𝑐 𝑦)log𝑝(𝑦 𝑐, 𝑧)
+KL[𝑞(𝑧 |𝑦) | 𝑝(𝑧)] + KL[𝑞(𝑐 |𝑦) | |𝑞(𝑐)]



1. Content preserving loss 
 

2. Template preserving loss of 
pairs 

 

 is the text sketch by removing 
table entry 
i.e. cross entropy of variational 
prediction from templates

lcp = 𝔼q(c|y) |c − f(x) |2 + DKL(q(c |y) ∥ p(c))

ltp = − 𝔼q(z|y)[log p(ỹ |z, x)]
ỹ

Preserving Content & Template

zc

y

xtable 
data

text

template 
variable

content 
variable



Table data :  
{name[Loch Fyne], 

eatType[restaurant], food[French] 
price[below $20]} 

Text :   
Loch Fyne is a French restaurant 

catering to a budget of below $20.
Text Sketch :  
<ent> is a <ent> <ent> catering to 

a budget of <ent>.

x

y

ỹ

46

Preserving Template

zc

y

xtable 
data

text

template 
variable

content 
variable

Ensure the template variable could recover the text sketch



Table Text

Sukiyaki is a Japanese restaurant. It is 
a pub and it has a average cost and 

good rating. It is in seattle.

?
q(<c,z>|y)

Known for its creative flavours, 
Holycrab's signatures are the 

Hokkien crab.

• Semi-supervised learning: “Back-translate” 
corpus to obtain pseudo-parallel pairs 
<table, text>, to enrich the learning

47

Learning with Raw Corpus

name Sukiyaki
eatType pub

food Japanese
price average
rating good
area seattle



• Tasks 
– WIKI: generating short-bio from person profile. 
– SPNLG: generating restaurant description from 

attributes 

• Evaluation Metric: 
– Quality (Accuracy): BLEU score to ground-truth 
– Diversity: self-BLEU (lower is better) 48

Evaluation Setup

Dataset
Train Valid Test

table-text 
pairs raw text table-text 

pairs raw text table-text 
pairs

WIKI 84k 842k 73k 43k 73k
SPNLG 14k 150k 21k / 21k
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VTM Produces High-quality and 
Diverse Text

WIKI

B
LE

U

0.08

0.124

0.168

0.212

0.256

0.3

Self-BLEU
0.6 0.705 0.81 0.915 1.02

VTM T2S-beam

T2S-
pretrain

Temp-KN

SPNLG

B
LE

U
0.05

0.14

0.23

0.32

0.41

0.5

Self-BLEU
0.3 0.48 0.66 0.84 1.02

VTM T2S-beam
T2S-
pretrain

Temp-KN

Ideal Ideal

VTM uses beam-search decoding.

VTM [Ye, …, Lei Li, ICLR20b]



BL
EU
↑

0.1

0.14

0.18

0.22

0.26

Self-BLEU↓
0.7 0.75 0.8 0.85 0.9

50

Raw data and loss terms are necessary

VTM

w/o 
information-preserving losses

w/o raw data

Ablation results on Wiki-bio dataset
ideal
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Interpreting VTM
Template variable project to 2D
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VTM Generates Diverse Text

1: John Ryder (8 August 1889 – 4 April 1977) 
was an Australian cricketer.

2: Jack Ryder (born August 9, 1889 in Victoria, 
Australia) was an Australian cricketer. 

3: John Ryder, also known as the king of 
Collingwood (8 August 1889 – 4 April 1977) 
was an Australian cricketer. 

Input Data Table Generated Text
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Learning Disentangled Representation 
of Syntax and Semantics 

There is an apple 
on the table

Syntax provider 

The dog is 
behind the door

Semantic content

DSSVAE

There is a dog behind the door

DSS-VAE [Y. Bao, H. Zhou, S. Huang, Lei Li, L. Mou, O. Vechtomova, X. Dai, J. Chen, ACL19c]

x

zsyn zsem

syntactic 
style

semantic 
content

sentence

DSSVAE enables learning and 
transferring sentence-writing styles 



• VTM and its extensions have been applied 
to multiple online systems on Toutiao 
including query suggestion generation, ads 
bid-word generation, etc.  

• Serving over 100million active users.  
• 10% of query suggestion phrases from the 

generation algorithm. 

54

Impact
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Takeaway

zc

y

xtable 
data

text

template 
variable

content 
variable

x

zsyn zsem

syntactic 
style

semantic 
content

sentence

VTM DSSVAE

•Deep latent models enable learning 
with both table-text pairs and 
unpaired text, with high accuracy 

•Disentangling approach for model 
composition 

•Variational technique to speed up 
inference
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Interpretable Text Generation

“Remind me about 
the football game.”

[action=remind]
“Will it be overcast 

tomorrow?”
[action=request]

……x0 x1 x2

x1 x2 x3
GENERATOR Sampling

Generate Sentences with 
interpretable factors

Latent structure 
dialog actions
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How to Interpret Latent Variables in 
VAEs? 

Remind me about my 
meeting.

: 
continuou

s latent 
variables

z

Will it be humid in New York today?

Variational Auto-encoder 
(VAE) 

z xinterpretable

structure

difficult to 
interpret 

discrete factors

(Kingma & Welling, 2013) 
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VAEs Introduce Latent Variables

: discrete 
latent 

variables

c

Variational Auto-encoder 
(VAE) 

c xinterpretable 
structure

expressiveness 
is limited.

Remind me about my 
meeting. Remind me about the 

football game.

(Zhao et al, 2018b) 



59

Discrete Variables Could Enhance 
Interpretability - but one has to do it right!

Gaussian Mixture Variational Auto-
encoder (GM-VAE) 

interpretable 
structure z xc

: discrete 
component
c

: continuous 
latent variable
z Remind me 

about the 
football game.

Will it be overcast 
tomorrow?

How to fix it?

mode-
collapse

Why?

(Dilokthanakul et al., 2016; Jiang et al., 2017) 
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Do it right for VAE w/ hierarchical priors -  
Dispersed Exponential-family Mixture VAE

The negative dispersion term in ELBO 
encourages the parameters of all mixture 

components in-distinguishable and induces 
the mode-collapse.

Dispersed EM-VAE 

L(θ; x) = ELBO + β ⋅ Ld,

Ld = 𝔼qϕ(c|x)A(ηc) − A(𝔼qϕ(c|x)ηc) .
Include an extra positive 

dispersion term to 
balance the mode 

collapse from ELBO

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 
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Generation Quality and Interpretability 
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Homogeneity with golden label in DD BLEU of reconstruction in DD

Best interpretability Best reconstruction

DGM-VAE obtains the best performance in 
interpretability and reconstruction

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 
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Latent Variables Learned by DEM-VAE 
are Semantically Meaningful

 Inferred action=Inform-route/address 
“There is a Safeway 4 miles away.” 
“There are no hospitals within 2 miles.” 
“There is Jing Jing and PF Changs.” 
…

Inferred action =Request-weather 
“What is the weather today?” 
“What is the weather like in the city?” 
“What's the weather forecast in New 
York?” 
…

Example actions and corresponding 
utterances (classified by )qϕ(c |x)

 Utterances of the same actions could be assigned 
with the same discrete latent variable .c

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 
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Generate Sensible Dialog Response 
with DEM-VAE

Predict 
User: “Thank you car, let's go there!” 

Predict 
User: “What is the address?”

(action = thanks) (action = request-address) 

sampling different values of discrete latent variables

Input Context 
Sys: “Taking you to Chevron.”

 Responses with different actions are generated by 
sampling different values of discrete latent variables.

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 



Mirror Generative Model for 
Neural Machine Translation
MGNMT [Z. Zheng, H. Zhou, S. Huang, Lei Li, X. Dai, 

J. Chen, ICLR 2020a]
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Neural Machine Translation

Chinese 
x ∼ 𝖣xy

English 
y ∼ 𝖣xy

[p(y |x; θxy)]
src2tgt 

[p(x |y; θyx)]
tgt2src TM

• BUT, very expensive/non-trivial to obtain 
– Low resource language pairs (e.g., English-to-Tamil) 
– Low resource domains (e.g., social network) 

• Large-scale mono-lingual data are not fully 
utilized

• Neural machine translation (NMT) systems are 
super good when you have large amount of 
parallel bilingual data



• There are two categories of methods using 
non-parallel data 
– Training 
‣ Back-translation, Joint Back-translation, dual 

learning… 
– Decoding 
‣ Interpolation w/ external LM … 

• Still not the best

66

Existing approaches to exploit non-
parallel data



[p(y; θy)]
target LM

[p(y |x; θxy)]
src2tgt 

[p(x |y; θyx)]
tgt2src 

• A pair of relevant TMs so that they can 
directly boost each other in training

67

So, what we expect?

[p(y |z; θy)]
target LM

[p(y |x, z; θxy)]
src2tgt 

[p(x |y, z; θyx)]
tgt2src 

z(x, y)

[p(y |x; θxy)]
src2tgt 

[p(y |x, z; θxy)]
src2tgt 

z(x, y)

• A pair of relevant TM & LM 
so that they can cooperate 
more effectively for better 
decoding We need a 

bridge
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Integrating Four Language Skills with 
MGNMT

z(x, y)
yx

y x

[p(y |x, z; θxy)]src2tg[p(y |z; θy)]target 

[p(x |y, z; θyx)]tgt2sr[p(x |z; θx)]source 

MGNM

1. composing sentence in Source lang 
2. composing sentence in Target lang 
3. translating from source to target 
4. translating from target to source

Benefits 
utilizing both 

parallel 
bilingual data 

and non-
parallel corpus

MGNMT [Z. Zheng, H. Zhou, S. Huang, L. Li, X. Dai, J. Chen, ICLR 2020a]



Mirror-Generative NMT

We propose the mirror-generative NMT (MGnmt) to address the aforementioned problems
for e↵ectively exploiting non-parallel data in NMT.

I Jointly training translation models (i.e., Tmx!y and Tmy!x) and language models (i.e.,
Lmx and Lmy) in a unified probabilistic framework.

I A latent variable z representing the shared semantic space between the two language x
and y , inspired by generative NMT (Shaw et al., 2018)

x yMGNMT z(x, y)
[p(x |z)]src LM

[p(x |y, z)]tgt2src TM

[p(y |x, z)]src2tgt TM

[p(y |z)]
tgt LM

y

x

z(x, y) yx
y x

[p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

MGNMT

Zheng et al. (NJU & ByteDance) iclr20 31 Mar, 2020 13 / 34

• The mirror property to decompose 
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Approach: Mirror-Generative NMT

Published as a conference paper at ICLR 2020

z

x y

z

x y
GNMT MGNMT

Figure 1: The
graphical model of
MGNMT.

x yMGNMT z(x, y)
[p(x |z)]src LM

[p(x |y, z)]tgt2src TM

[p(y |x, z)]src2tgt TM

[p(y |z)]
tgt LM

y

x

z(x, y) yx
y x

[p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

MGNMT

Figure 2: Illustration of the mirror property of MGNMT.

For decoding, some related works (Gulcehre et al., 2015) propose to interpolate external language
models LMy (trained separately on target monolingual data) to translation model TMx!y, which in-
cludes knowledge from target monolingual data for better translation. This is particularly useful for
domain adaptation because we may obtain better translation output quite fitting test domain (e.g.,
social networks), through a better LMy. However, directly interpolating an independent language
model in decoding maybe not the best. First, the language model used here is external, still inde-
pendently learned to the translation model, thus the two models may not cooperate well by a simple
interpolation mechanism (even conflict). Additionally, the language model is only included in de-
coding, which is not considered in training. This leads to the inconsistency of training and decoding,
which may harm the performance.

In this paper, we propose the mirror-generative NMT (MGNMT) to address the aforementioned
problems for effectively exploiting non-parallel data in NMT. MGNMT is proposed to jointly train
translation models (i.e., TMx!y and TMy!x) and language models (i.e., LMx and LMy) in a unified
framework, which is non-trivial. Inspired by generative NMT (Shah & Barber, 2018), we propose to
introduce a latent semantic variable z shared between x and y. Our method exploits the symmetry,
or mirror property, in decomposing the conditional joint probability p(x, y|z), namely:

log p(x, y|z) = log p(x|z) + log p(y|x, z) = log p(y|z) + log p(x|y, z)

=
1

2
[log p(y|x, z)| {z }

src2tgt TMx!y

+ log p(y|z)| {z }
target LMy

+ log p(x|y, z)| {z }
tgt2src TMy!x

+ log p(x|z)| {z }
source LMx

] (1)

The graphical model of MGNMT is illustrated in Figure 1. MGNMT aligns the bidirectional trans-
lation models as well as language models in two languages through a shared latent semantic space
(Figure 2), so that all of them are relevant and become conditional independent given z. In such
case, MGNMT enables following advantages:

(i) For training, thanks to z as a bridge, TMy!x and TMx!y are not independent, thus ev-
ery updating of one direction will directly benefit the other direction. This improves the
efficiency of using non-parallel data. (Section 3.1)

(ii) For decoding, MGNMT could naturally take advantages of its internal target-side language
model, which is jointly learned with the translation model. Both of them contribute to the
better generation process together. (Section 3.2)

Note that MGNMT is orthogonal to dual learning (He et al., 2016a) and joint back-translation (Zhang
et al., 2018). Translation models in MGNMT are dependent, and the two translation models could
directly promote each other. Differently, dual learning and joint back-translation works in an im-
plicit way, and these two approaches can also be used to further improve MGNMT. The language
models used in dual learning faces the same problem as Gulcehre et al. (2015). Given GNMT, the
proposed MGNMT is also non-trivial. GNMT only has a source-side language model, thus it cannot
enhance decoding like MGNMT. Also, in Shah & Barber (2018), they require GNMT to share all the
parameters and vocabularies between translation models so as to utilize monolingual data, which is
not best suited for distant language pairs. We will give more comparison in the related work.

Experiments show that MGNMT achieves competitive performance on parallel bilingual data, while
it does advance training on non-parallel data. MGNMT outperforms several strong baselines in
different scenarios and language pairs, including resource-rich scenarios, as well as resource-poor
circumstances on low-resource language translation and cross-domain translation. Moreover, we
show that translation quality indeed becomes better when the jointly learned translation model and
language model of MGNMT work together. We also demonstrate that MGNMT is architecture-free
which can be applied to any neural sequence model such as Transformer and RNN. These pieces of
evidence verify that MGNMT meets our expectation of fully utilizing non-parallel data.

2

• Relevant TMs & LMs under a unified probabilistic 
framework! 

– Enables the aforementioned advantages

p(x, y |z) = p(y |x, z)p(x |z) = p(x |y, z)p(x |z)
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Algorithm 1 Training MGNMT from Non-Parallel Data
Input: (pretrained) MGNMT M(✓) , source monolingual dataset Dx, target monolingual dataset Dy

1: while not converge do
2: Draw source and target sentences from non-parallel data: x(s) ⇠ Dx, y(t) ⇠ Dy

3: Use M to translate x(s) to construct a pseudo-parallel sentence pair hx(s), y(s)
pseui

4: Compute L(x(s); ✓x, ✓yx,�) with hx(s), y(s)
pseui by Equation (5)

5: Use M to translate y(t) to construct a pseudo-parallel sentence pair hx(t)
pseu, y

(t)i
6: Compute L(y(t); ✓y, ✓xy,�) with hx(t)

pseu, y
(t)i by Equation (4)

7: Compute the deviation r✓ by Equation (6)
8: Update parameters ✓ ! ✓ + ⌘r✓
9: end while

3 MIRROR-GENERATIVE NEURAL MACHINE TRANSLATION

We propose the mirror-generative NMT (MGNMT), a novel deep generative model which simulta-
neously models a pair of src2tgt and tgt2src (variational) translation models, as well as a pair of
source and target (variational) language models, in a highly integrated way with the mirror property.
As a result, MGNMT can learn from non-parallel bilingual data, and naturally interpolate its learned
language model with the translation model in the decoding process.

The overall architecture of MGNMT is illustrated graphically in Figure 3. MGNMT models the
joint distribution over the bilingual sentences pair by exploiting the mirror property of the joint
probability: log p(x, y|z) = 1

2 [log p(y|x, z) + log p(y|z) + log p(x|y, z) + log p(x|z)], where the
latent variable z (we use a standard Gaussian prior z ⇠ N (0, I)) stands for the shared semantics
between x and y, serving as a bridge between all the integrated translation and language models.

3.1 TRAINING

3.1.1 LEARNING FROM PARALLEL DATA

We first introduce how to train MGNMT on a regular parallel bilingual data. Given a parallel bilin-
gual sentence pair hx, yi, we use stochastic gradient variational Bayes (SGVB) (Kingma & Welling,
2014) to perform approximate maximum likelihood estimation of log p(x, y). We parameterize the
approximate posterior q(z|x, y;�) = N (µ�(x, y),⌃�(x, y)). Then from Equation (1), we can have
the Evidence Lower BOund (ELBO) L(x, y;✓;�) of the log-likelihood of the joint probability as:

log p(x, y) � L(x, y;✓,�) = Eq(z|x,y;�)[
1

2
{log p(y|x, z; ✓xy) + log p(y|z; ✓y)

+ log p(x|y, z; ✓yx) + log p(x|z; ✓x)}] (2)
�DKL[q(z|x, y;�)||p(z)]

where ✓ = {✓x, ✓yx, ✓y, ✓xy} is the set of the parameters of translation and language models. The
first term is the (expected) log-likelihood of the sentence pair. The expectation is obtained by Monte
Carlo sampling. The second term is the KL-divergence between z’s approximate posterior and prior
distributions. By relying on a reparameterization trick (Kingma & Welling, 2014), we can now
jointly train all the components using gradient-based algorithms.

3.1.2 LEARNING FROM NON-PARALLEL DATA

Since MGNMT has intrinsically a pair of mirror translation models, we design an iterative training
approach to exploit non-parallel data, in which both directions of MGNMT could benefit from the
monolingual data mutually and boost each other. The proposed training process on non-parallel
bilingual data is illustrated in Algorithm 1.

Formally, given non-parallel bilingual sentences, i.e., x(s) from source monolingual dataset Dx =
{x(s)|s = 1...S} and y(t) from target monolingual dataset Dy = {y(t)|t = 1...T}, we aim to
maximize the lower-bounds of the likelihood of their marginal distributions mutually:

log p(x(s)) + log p(y(t)) � L(x(s); ✓x, ✓yx,�) + L(y(t); ✓y, ✓xy,�) (3)
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�z[�log p(x, y |z)]
x

y

[q(z |x, y)]
Inference Model

x y

�(x, y)
�(x, y)

+
�

 Sample      from   � �(1, I )

DKL[�(�(x, y), �(x, y) | |�(0,I )]

z(x, y) [p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

Figure 3: Illustration of the architecture of MGNMT.

2 BACKGROUND AND RELATED WORK

Notation Given a pair of sentences from source and target languages, e.g., hx, yi, we denote x as
a sentence of the “source” language, and y as a sentence of the “target” language. Additionally, we
use the terms “source-side” and “target-side” of a translation direction to denote the input and the
output sides of it, e.g., the source-side of the ”tgt2src“ translation is the target language.

Neural machine translation Conventional neural machine translation (NMT) models often adopt
an encoder-decoder framework (Bahdanau et al., 2015) with discriminative learning. Here NMT
models aim to approximate the conditional distribution log p(y|x; ✓xy) over a target sentence y =
hy1, . . . , yLyi given a source sentence x = hx1, . . . , xLxi. Here we refer to such regular NMT
models as discriminative NMT models. Training criterion for a discriminative NMT model is to
maximize the conditional log-likelihood log p(y|x; ✓xy) on abundant parallel bilingual data Dxy =
{x(n), y(n)|n = 1...N} of i.i.d observations.

As pointed out by Zhang et al. (2016) and Su et al. (2018), the shared semantics z between x and
y are learned in an implicit way in discriminative NMT, which is insufficient to model the semantic
equivalence in translation. Recently, Shah & Barber (2018) propose a generative NMT (GNMT) by
modeling the joint distribution p(x, y) instead of p(y|x) with a latent variable z:

log p(x, y|z;✓ = {✓x, ✓xy}) = log p(x|z; ✓x) + log p(y|x, z; ✓xy)

where GNMT models log p(x|z; ✓x) as a source variational language model. Eikema & Aziz (2019)
also propose a similar approach. In addition, Chan et al. (2019) propose a generative insertion-based
modeling for sequence, which also models the joint distribution.

Exploiting non-parallel data for NMT Both discriminative and generative NMT could not di-
rectly learn from non-parallel bilingual data. To remedy this, back-translation and its variants (Sen-
nrich et al., 2016b; Zhang et al., 2018) exploit non-parallel bilingual data by generating synthetic
parallel data. Dual learning (He et al., 2016a; Xia et al., 2017) learns from non-parallel data in a
round-trip game via reinforcement learning, with the help of pretrained language models. Although
these methods have shown their effectiveness, the independence between translation models, and
between translation and language models (dual learning) may lead to inefficiency to utilize non-
parallel data for both training and decoding as MGNMT does. In the meantime, iterative learning
schemes like them could also complement MGNMT.

Some other related studies exploit non-parallel bilingual data by sharing all parameters and vocab-
ularies between source and target languages, by which two translation directions can be updated by
either monolingual data (Dong et al., 2015; Johnson et al., 2017; Firat et al., 2016; Artetxe et al.,
2018; Lample et al., 2018), and GNMT as well in an auto-encoder fashion. However, they may still
fail to apply to distant language pairs (Zhang & Komachi, 2019) such as English-to-Chinese, which
is also verified in our experiments.

Additionally, as aforementioned, integrating language model is another direction to exploit monolin-
gual data (Gulcehre et al., 2015; Stahlberg et al., 2018; Chu & Wang, 2018) for NMT. However, this
kind of methods often resorts to external trained language models, which is agnostic to translation
task. Besides, although GNMT contains a source-side language model, it cannot help decoding. In
contrast, MGNMT jointly learns translation and language modeling probabilistically and can natu-
rally rely on both together for a better generation.

3

mirror

qz pz

• Given: a parallel bilingual sentence pair 
 

• Goal: maximize the ELBO of the joint dist. 
:

⟨x, y⟩

p(x, y)



• Given: monolingual source sentence  
and target sentence  

• Goal: maximize the lower-bounds of 
source & target marginals

x(s)

y(t)
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Training w/ non-parallel data
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Algorithm 1 Training MGNMT from Non-Parallel Data
Input: (pretrained) MGNMT M(✓) , source monolingual dataset Dx, target monolingual dataset Dy

1: while not converge do
2: Draw source and target sentences from non-parallel data: x(s) ⇠ Dx, y(t) ⇠ Dy

3: Use M to translate x(s) to construct a pseudo-parallel sentence pair hx(s), y(s)
pseui

4: Compute L(x(s); ✓x, ✓yx,�) with hx(s), y(s)
pseui by Equation (5)

5: Use M to translate y(t) to construct a pseudo-parallel sentence pair hx(t)
pseu, y

(t)i
6: Compute L(y(t); ✓y, ✓xy,�) with hx(t)

pseu, y
(t)i by Equation (4)

7: Compute the deviation r✓ by Equation (6)
8: Update parameters ✓ ! ✓ + ⌘r✓
9: end while

3 MIRROR-GENERATIVE NEURAL MACHINE TRANSLATION

We propose the mirror-generative NMT (MGNMT), a novel deep generative model which simulta-
neously models a pair of src2tgt and tgt2src (variational) translation models, as well as a pair of
source and target (variational) language models, in a highly integrated way with the mirror property.
As a result, MGNMT can learn from non-parallel bilingual data, and naturally interpolate its learned
language model with the translation model in the decoding process.

The overall architecture of MGNMT is illustrated graphically in Figure 3. MGNMT models the
joint distribution over the bilingual sentences pair by exploiting the mirror property of the joint
probability: log p(x, y|z) = 1

2 [log p(y|x, z) + log p(y|z) + log p(x|y, z) + log p(x|z)], where the
latent variable z (we use a standard Gaussian prior z ⇠ N (0, I)) stands for the shared semantics
between x and y, serving as a bridge between all the integrated translation and language models.

3.1 TRAINING

3.1.1 LEARNING FROM PARALLEL DATA

We first introduce how to train MGNMT on a regular parallel bilingual data. Given a parallel bilin-
gual sentence pair hx, yi, we use stochastic gradient variational Bayes (SGVB) (Kingma & Welling,
2014) to perform approximate maximum likelihood estimation of log p(x, y). We parameterize the
approximate posterior q(z|x, y;�) = N (µ�(x, y),⌃�(x, y)). Then from Equation (1), we can have
the Evidence Lower BOund (ELBO) L(x, y;✓;�) of the log-likelihood of the joint probability as:

log p(x, y) � L(x, y;✓,�) = Eq(z|x,y;�)[
1

2
{log p(y|x, z; ✓xy) + log p(y|z; ✓y)

+ log p(x|y, z; ✓yx) + log p(x|z; ✓x)}] (2)
�DKL[q(z|x, y;�)||p(z)]

where ✓ = {✓x, ✓yx, ✓y, ✓xy} is the set of the parameters of translation and language models. The
first term is the (expected) log-likelihood of the sentence pair. The expectation is obtained by Monte
Carlo sampling. The second term is the KL-divergence between z’s approximate posterior and prior
distributions. By relying on a reparameterization trick (Kingma & Welling, 2014), we can now
jointly train all the components using gradient-based algorithms.

3.1.2 LEARNING FROM NON-PARALLEL DATA

Since MGNMT has intrinsically a pair of mirror translation models, we design an iterative training
approach to exploit non-parallel data, in which both directions of MGNMT could benefit from the
monolingual data mutually and boost each other. The proposed training process on non-parallel
bilingual data is illustrated in Algorithm 1.

Formally, given non-parallel bilingual sentences, i.e., x(s) from source monolingual dataset Dx =
{x(s)|s = 1...S} and y(t) from target monolingual dataset Dy = {y(t)|t = 1...T}, we aim to
maximize the lower-bounds of the likelihood of their marginal distributions mutually:

log p(x(s)) + log p(y(t)) � L(x(s); ✓x, ✓yx,�) + L(y(t); ✓y, ✓xy,�) (3)
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where L(x(s); ✓x, ✓yx,�) and L(y(t); ✓y, ✓xy,�) are the lower-bounds of the source and target
marginal log-likelihoods, respectively.

Let us take L(y(t); ✓y, ✓xy,�) for example. Inspired by Zhang et al. (2018), we sample x with
p(x|y(t)) in source language as y(t)’s translation (i.e., back-translation) and obtain a pseudo-parallel
sentence pair hx, y(t)i. Accordingly, we give the form of L(y(t); ✓y, ✓xy,�) in Equation (4). Like-
wise, Equation (5) is for L(y(t); ✓y, ✓xy,�). (See Appendix for the their derivation).

L(y(t); ✓y, ✓xy,�) = Ep(x|y(t))

⇥
Eq(z|x,y(t);�)[

1

2
{log p(y(t)|z; ✓y) + log p(y(t)|x, z; ✓xy)}]

�DKL[q(z|x, y(t);�)||p(z)]
⇤

(4)

L(x(s); ✓x, ✓yx,�) = Ep(y|x(s))

⇥
Eq(z|x(s),y;�)[

1

2
{log p(x(s)|z; ✓x) + log p(x(s)|y, z; ✓yx)}]

�DKL[q(z|x(s), y;�)||p(z)]
⇤

(5)

The parameters included in Equation (3) can be updated via gradient-based algorithm, where the
deviations are computed as Equation (6) in a mirror and integrated behavior:

r✓ = r{✓x,✓yx}L(x
(s); ·) +r{✓y,✓xy}L(y

(t); ·) +r�[L(x(s); ·) + L(y(t); ·)] (6)

The overall training process of exploiting non-parallel data does to some extent share a similar idea
with joint back-translation (Zhang et al., 2018). But they only utilize one side of non-parallel data to
update one direction of translation models for each iteration. Thanks to z from the shared approxi-
mate posterior q(z|x, y;�) as a bridge, both directions of MGNMT could benefit from either of the
monolingual data. Besides, MGNMT’s “back-translated” pseudo translations have been improved
by advanced decoding process (see Equation (7)), which leads to a better learning effect.

3.2 DECODING

Thanks to simultaneously modeling of translation models and language models, MGNMT is now
able to generate translation by the collaboration of translation and language models together. This
endows MGNMT’s translation in target-side language with more domain-related fluency and quality.

Due to the mirror nature of MGNMT, the decoding process is also of symmetry: given a source
sentence x (or target sentence y), we want to find a translation by y = argmaxy p(y|x) =
argmaxy p(x, y) (x = argmaxx p(x|y) = argmaxx p(x, y)), which is approximated by a mir-
ror variant of the idea of EM decoding algorithm in GNMT (Shah & Barber, 2018). Our decoding
process is illustrated in Algorithm 2.

Let’s take the srg2tgt translation as example. Given a source sentence x, 1) we first sam-
ples an initial z from the standard Gaussian prior and then obtain an initial draft translation as
ỹ = argmaxy p(y|x, z); 2) this translation is iteratively refined by re-sampling z this time from the
approximate posterior q(z|x, ỹ;�), and re-decoding with beam search by maximizing the ELBO:
ỹ  argmaxy L(x, ỹ;✓,�)

= argmaxy Eq(z|x,ỹ;�)[log p(y|x, z) + log p(y|z) + log p(x|z) + log p(x|y, z)] (7)

= argmaxy Eq(z|x,ỹ;�)
⇥X

i

[log p(yi|y<i, x, z) + log p(yi|y<i, z)]| {z }
Decoding Score

+ log p(x|z) + log p(x|y, z)| {z }
Reconstructive Reranking Score

⇤

The decoding scores at each step are now given by TMx!y and LMy, which is helpful to find a sen-
tence y not only being the translation of x but also being more possible in the target language2. The
reconstructive reranking scores are given by LMx and TMy!x, which are employed after translation
candidates are generated. MGNMT can leverage this kind of scores to sort the translation candidates
and determine the most faithful translation to the source sentence. It is to essentially share the same
idea as Ng et al. (2019), which propose a neural noisy channel reranking to incorporate reconstruc-
tive score to rerank the translation candidates. Some studies like Tu et al. (2017), Cheng et al. (2016)
also exploit this bilingual semantic equivalence as reconstruction regularization for training.

2Empirically, we find that using log p(yi|y<i, x, z) + � log p(yi|y<i, z) with a coefficient � ⇡ 0.3 leads to
more robust results, which shares the similar observations with Gulcehre et al. (2015).
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• Iterative EM decoding 
– Given source sentence , find a translation x
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Decoding: TM&LM work as a whole
Decoding: Collaboration of TM&LM

With MGnmt, the dependent TMs and LMs can now work together for better generation.

I Given a source sentence x , we want to find a translation by
y = argmaxy p(y |x) = argmaxy p(x , y) ⇡ argmaxy L(x , y ;✓, �).

I Mirror EM decoding: a mirror variant of the idea of EM decoding algorithm in
Gnmt (Shah and Barber, 2018).
Initialization: we first samples an initial z from the standard Gaussian prior and then obtain an

initial draft translation as ỹ = argmaxy p(y |x , z);

Iterative Refinement: this translation is iteratively refined by re-sampling z this time from the
approximate posterior q(z |x , ỹ ;�), and re-decoding with beam search by maximizing the
ELBO:

ỹ  argmaxy L(x , ỹ ;✓, �)

= argmaxy Eq(z|x,ỹ ;�)[log p(y |x , z) + log p(y |z) + log p(x |z) + log p(x |y , z)]

= argmaxy Eq(z|x,ỹ ;�)

⇥ X

i

[log p(yi |y<i , x , z) + log p(yi |y<i , z)]| {z }
Decoding Score

+ log p(x |z) + log p(x |y , z)
| {z }

Reconstructive Reranking Score

⇤
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where L(x(s); ✓x, ✓yx,�) and L(y(t); ✓y, ✓xy,�) are the lower-bounds of the source and target
marginal log-likelihoods, respectively.

Let us take L(y(t); ✓y, ✓xy,�) for example. Inspired by Zhang et al. (2018), we sample x with
p(x|y(t)) in source language as y(t)’s translation (i.e., back-translation) and obtain a pseudo-parallel
sentence pair hx, y(t)i. Accordingly, we give the form of L(y(t); ✓y, ✓xy,�) in Equation (4). Like-
wise, Equation (5) is for L(y(t); ✓y, ✓xy,�). (See Appendix for the their derivation).

L(y(t); ✓y, ✓xy,�) = Ep(x|y(t))

⇥
Eq(z|x,y(t);�)[

1

2
{log p(y(t)|z; ✓y) + log p(y(t)|x, z; ✓xy)}]

�DKL[q(z|x, y(t);�)||p(z)]
⇤

(4)

L(x(s); ✓x, ✓yx,�) = Ep(y|x(s))

⇥
Eq(z|x(s),y;�)[

1

2
{log p(x(s)|z; ✓x) + log p(x(s)|y, z; ✓yx)}]

�DKL[q(z|x(s), y;�)||p(z)]
⇤

(5)

The parameters included in Equation (3) can be updated via gradient-based algorithm, where the
deviations are computed as Equation (6) in a mirror and integrated behavior:

r✓ = r{✓x,✓yx}L(x
(s); ·) +r{✓y,✓xy}L(y

(t); ·) +r�[L(x(s); ·) + L(y(t); ·)] (6)

The overall training process of exploiting non-parallel data does to some extent share a similar idea
with joint back-translation (Zhang et al., 2018). But they only utilize one side of non-parallel data to
update one direction of translation models for each iteration. Thanks to z from the shared approxi-
mate posterior q(z|x, y;�) as a bridge, both directions of MGNMT could benefit from either of the
monolingual data. Besides, MGNMT’s “back-translated” pseudo translations have been improved
by advanced decoding process (see Equation (7)), which leads to a better learning effect.

3.2 DECODING

Thanks to simultaneously modeling of translation models and language models, MGNMT is now
able to generate translation by the collaboration of translation and language models together. This
endows MGNMT’s translation in target-side language with more domain-related fluency and quality.

Due to the mirror nature of MGNMT, the decoding process is also of symmetry: given a source
sentence x (or target sentence y), we want to find a translation by y = argmaxy p(y|x) =
argmaxy p(x, y) (x = argmaxx p(x|y) = argmaxx p(x, y)), which is approximated by a mir-
ror variant of the idea of EM decoding algorithm in GNMT (Shah & Barber, 2018). Our decoding
process is illustrated in Algorithm 2.

Let’s take the srg2tgt translation as example. Given a source sentence x, 1) we first sam-
ples an initial z from the standard Gaussian prior and then obtain an initial draft translation as
ỹ = argmaxy p(y|x, z); 2) this translation is iteratively refined by re-sampling z this time from the
approximate posterior q(z|x, ỹ;�), and re-decoding with beam search by maximizing the ELBO:
ỹ  argmaxy L(x, ỹ;✓,�)

= argmaxy Eq(z|x,ỹ;�)[log p(y|x, z) + log p(y|z) + log p(x|z) + log p(x|y, z)] (7)

= argmaxy Eq(z|x,ỹ;�)
⇥X

i

[log p(yi|y<i, x, z) + log p(yi|y<i, z)]| {z }
Decoding Score

+ log p(x|z) + log p(x|y, z)| {z }
Reconstructive Reranking Score

⇤

The decoding scores at each step are now given by TMx!y and LMy, which is helpful to find a sen-
tence y not only being the translation of x but also being more possible in the target language2. The
reconstructive reranking scores are given by LMx and TMy!x, which are employed after translation
candidates are generated. MGNMT can leverage this kind of scores to sort the translation candidates
and determine the most faithful translation to the source sentence. It is to essentially share the same
idea as Ng et al. (2019), which propose a neural noisy channel reranking to incorporate reconstruc-
tive score to rerank the translation candidates. Some studies like Tu et al. (2017), Cheng et al. (2016)
also exploit this bilingual semantic equivalence as reconstruction regularization for training.

2Empirically, we find that using log p(yi|y<i, x, z) + � log p(yi|y<i, z) with a coefficient � ⇡ 0.3 leads to
more robust results, which shares the similar observations with Gulcehre et al. (2015).
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– Initialization: get a draft translation 

– Iterative refinement: resampling  from 

inference model and redecoding by 
maximizing ELBO
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• Datasets 
– Low resource 

‣ WMT16 EN-RO 

‣ IWSLT16 EN-DE: domain adaptation (from TED to 
News) 

– High resource:  
‣ WMT14 EN-DE, NIST EN-ZH 

• Avoiding posterior collapse (Important!) 
– KL-annealing 
– Word dropout
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Experiments



• Low resource results
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MGNMT makes better use of non-
parallel data
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Table 2: Statistics of the training datasets for each translation tasks. These values of DKL[q(z)||p(z)]
are to some extent large, which means that MGNMT does rely on the latent variable.

Dataset WMT14 EN$DE NIST EN$ZH WMT16 EN$RO IWSLT16 EN$DE

KL-annealing steps 35k 13.5k 8k 4k
DKL[q(z)||p(z)] 6.78 8.26 6.36 7.81

Table 3: BLEU scores on low-resource translation (WMT16 EN$RO), and cross-domain translation
(IWSLT EN$DE).

Model
LOW-RESOURCE CROSS-DOMAIN
WMT16 EN$RO IN-DOMAIN (TED) OUT-DOMAIN (NEWS)
EN-RO RO-EN EN-DE DE-EN EN-DE DE-EN

Transformer (Vaswani et al., 2017) 32.1 33.2 27.5 32.8 17.1 19.9
GNMT (Shah & Barber, 2018) 32.4 33.6 28.0 33.2 17.4 20.1
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 34.1 35.3 28.4 33.7 22.0 24.9
Transformer+BT + non-parallel (Sennrich et al., 2016b) 33.9 35.0 27.8 33.3 20.9 24.3
Transformer+JBT + non-parallel (Zhang et al., 2018) 34.5 35.7 28.4 33.8 21.9 25.1
Transformer+Dual + non-parallel (He et al., 2016a) 34.6 35.7 28.5 34.0 21.8 25.3
MGNMT 32.7 33.9 28.2 33.6 17.6 20.2
MGNMT + non-parallel 34.9 36.1 28.5 34.2 22.8 26.1

4.1 RESULTS AND DISCUSSION

As shown in Table 3 and Table 4, MGNMT outperforms our competitive Transformer base-
line (Vaswani et al., 2017), Transformer-based GNMT (Shah & Barber, 2018) and related work
in both resource-poor scenarios and resource-rich scenarios.

MGNMT makes better use of non-parallel data. As shown in Table 3, MGNMT outperforms
our competitive Transformer baseline (Vaswani et al., 2017), Transformer-based GNMT (Shah &
Barber, 2018) and related work in both resource-poor scenarios.

1. On low-resource language pairs. The proposed MGNMT obtains a bit improvement over Trans-
former and GNMT on the scarce bilingual data. Large margins of improvement are obtained by
exploiting non-parallel data.
2. On cross-domain translation. To evaluate the capability of our model in the cross-domain set-
ting, we first trained our model on TED data from IWSLT benchmark as in-domain training, and then
exposed the model to out-of-domain NEWS non-parallel bilingual data from News Crawl to access-
ing out-domain knowledge. As shown in Table 3, being invisible to out-domain training data leads to
poor performance in out-domain testset of both Transformer and MGNMT. In this case, out-domain
non-parallel data contributes significantly, leading to 5.7⇠6.4 BLEU gains. We also conduct a case
study on the cross-domain translation in Appendix.
3. On Resource-rich scenarios. We also conduct regular translation experiments on two resource-
rich language pairs, i.e., EN$DE and NIST EN$ZH. As shown in Table 4, MGNMT can obtain
comparable results compared to discriminative baseline RNMT and generative baseline GNMT on
pure parallel setting. Our model can also achieve better performance by the aid of non-parallel
bilingual data than the compared previous approaches, consistent with the experimental results in
resource-poor scenarios.
4. Comparison to other semi-supervised work. We compare our approach with well-established
approaches which are also designed for leveraging non-parallel data, including back-translation
(Sennrich et al., 2016b, Transformer+BT), joint back-translation training (Zhang et al., 2018, Trans-
former+JBT), multi-lingual and semi-supervised variant of GNMT (Shah & Barber, 2018, GNMT-
M-SSL), and dual learning (He et al., 2016a, Transformer+Dual). As shown in Table 3, while
introducing non-parallel data to either low-resource language or cross-domain translation, all listed
semi-supervised approaches gain substantial improvements. Among them, our MGNMT achieves
the best BLEU score. Meanwhile, in resource-rich language pairs, the results are consistent. We
suggest that because the jointly trained language model and translation model could work coordi-
nately for decoding, MGNMT surpasses joint back-translation and dual learning. Interestingly, we
can see that the GNMT-M-SLL performs poorly on NIST EN$ZH, which means parameters-sharing
is not quite suitable for distant language pair. These results indicate its promising strength of boost-

7
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Table 4: BLEU scores on resource-rich language pairs.

Model WMT14 NIST
EN-DE DE-EN EN-ZH ZH-EN

Transformer (Vaswani et al., 2017) 27.2 30.8 39.02 45.72
GNMT (Shah & Barber, 2018) 27.5 31.1 40.10 46.69
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 29.7 33.5 41.73 47.70
Transformer+BT + non-parallel (Sennrich et al., 2016b) 29.6 33.2 41.98 48.35
Transformer+JBT + non-parallel (Zhang et al., 2018) 30.0 33.6 42.43 48.75
Transformer+Dual + non-parallel (He et al., 2016b) 29.6 33.2 42.13 48.60
MGNMT 27.7 31.4 40.42 46.98
MGNMT + non-parallel 30.3 33.8 42.56 49.05

Figure 4: BLEU vs. scales of non-
parallel data on IWSLT EN$DE tasks.

Figure 5: BLEU increments vs. adding one side mono-
lingual (w/o interactive training) or non-parallel bilin-
gual data for MGNMT on IWSLT EN$DE tasks.

ing low-resource translation and exploiting domain-related knowledge from non-parallel data for
cross-domain scenarios.

Table 5: Incorporating LM for decoding
(IWSLT task).

Model EN-DE DE-EN

MGNMT: dec. w/o LM 21.2 24.6
MGNMT: dec. w/ LM 22.8 26.1
Transformer 17.1 19.9
Transformer+LM-FUSION 18.4 21.1

MGNMT is better at incorporating language
model in decoding In addition, we find from Ta-
ble 5 that simple interpolation of NMT and exter-
nal LM (separately trained on target-side mono-
lingual data) (Gulcehre et al., 2015, Transformer-
LM-FUSION) only produces mild effects. This can
be attributed to the unrelated probabilistic model-
ing, which means that a more naturally integrated
solution like MGNMT is necessary.

Table 6: Comparison with NCMR (IWSLT task).

Model EN-DE DE-EN

MGNMT + non-parallel 22.8 26.1
Transformer+BT w/ NCMR (w/o) 21.8 (20.9) 25.1 (24.3)
GNMT-M-SSL w/ NCMR (w/o) 22.4 (22.0) 25.6 (24.9)

Comparison with noisy channel model
reranking (Ng et al., 2019) We com-
pare MGNMT with the noisy channel
model reranking (Ng et al., 2019, NCMR).
NCMR uses log p(y|x) + �1 log p(x|y) +
�2 log p(y) to rerank the translation candi-
dates obtained from beam search, where �1 = 1 and �2 = 0.3, which are similar to our decoding
setting. As shown in Table 6, NCMR is indeed effective and easy-to-use. But MGNMT still works
better. Specifically, the advantage of the unified probabilistic modeling in MGNMT not only im-
proves the effectiveness and efficiency of exploiting non-parallel data for training, but also enables
the use of the highly-coupled language models and bidirectional translation models at testing time.

Effects of non-parallel data. We conduct experiments regarding the scales of non-parallel data on
IWSLT EN$DE to investigate the relationship between benefits and data scales. As shown in Fig-
ure 4, as the amount of non-parallel data increases, all models become strong gradually. MGNMT
outperforms Transformer+JBT consistently in all data scales. Nevertheless, the growth rate de-
creases probably due to noise of the non-parallel data. We also investigate if one side of non-parallel
data could benefit both translation directions of MGNMT. As shown in Figure 5, we surprisingly
find that only using one side monolingual data, for example, English, could also improve English-
to-German translation a little bit, which meets our expectation.

8

– Non-parallel data is helpful  
– MGNMT works well especially on low resource 
settings
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Machine Translation at Bytedance 
(VolcTrans)
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Speech-to-Text Translation Demo

VolcTrans

Simultaneous Speech-to-text Translation @ VolcTrans
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Takeaway

•MGNMT is a unified probabilistic framework which 
jointly models TMs and LMs and enables their cooperation 
in a better way. 

• In low-resource settings, MGNMT works better than in 
high-resource settings 

• Training of MGNMT is somewhat tricky and inefficient  
• Could be extended to multilingual or unsupervised 

scenarios.  
•  Our VolcTrans system already serves > 100million active 

users



1. Basics of Deep Generative Models for 
Sequences  

2. Deep Latent Variable Models 
3. Monte-Carlo Methods for Constrained Text 

Generation 
4. Multimodal machine writing: show case 
5. Summary
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Monte-Carlo Methods for 
Constrained Text Generation

CGMH [N. Miao, H. Zhou, L. Mou, R. Yan, Lei Li, AAAI19] 
MHA [H. Zhang, N. Miao, H. Zhou, Lei Li, ACL19a] 

TSMH [M. Zhang, N. Jiang, Lei Li, Yexiang Xue, EMNLP20e]
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Automate Creative Advertisement Design



To generate sentences that are: 
• Fluent 
• Constraint-satisfying 

• e.g. keyword-occurrence constraint 
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Constrained Text Generation

Comfortable sports shoes, 
a breathing pair of man's 
shoes, accompanying you 
in autumn

“Autumn” 
“Sports shoes”



• One generic formulation for many tasks 
• Ads creative slogan design given product 

highlighting attributes 
• Title generation for articles given keywords 
• Writer assistant: automatic sentence error 

correction 
• Machine translation with bilingual entity-

dictionary
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Why is Constrained Text Generation 
important?



• Text space is discrete 
– Interpolation and smoothing in the surface level 

would not work 
• High-dimensional space: exponential search 

space for sentence  
• Controlling the generation with desired 

properties is challenging 
• The lack of labeled data pairs <constraint, 

ground-truth sentence> ➔ learning without 
supervision!
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Why is Text Generation difficult?



Exponential search space, O((N-k)V) 
RNN grid beam search [Hokamp & Liu 2017] 
does not usually produce high quality 
sentences
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Why is Constrained Text Generation 
difficult?

h0

𝑤0

h1

𝑤1

h2
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No 
constraints

word 1

word 2

word 3

pos



• Key idea: To generation 
samples from the implicit 
distribution by iterative 
editing (MH sampling)
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Constrained Sentence Generation via 
Metropolis-Hastings Sampling

CGMH [N. Miao, H. Zhou, L. Mou, R. Yan, Lei Li, AAAI19]

π(x) = ∏
i

P(xi |x0:i−1) ⋅ ∏
j

Pj
C(x)

pre-trained  
language 

model prob.

indicator (0-1) 
function for  
constraints

All token seq’s

Fluent 
 Text

Constrained

Ideal 
Text
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Metropolis-Hastings Sampling

One case of Markov chain Monte Carlo methods, Metropolis-
Hastings(MH) performs sampling by first proposes a transition, and 
then accepts or rejects the transition.  

! "# "$%&
= min	(1, / "# · 1 "$%& "#

/ "$%& · 1 "# "$%&
)

𝛑 is the target density, 
g is proposal distribution, 
which is easy to sample 

State 1

State 4

State 3

State 2

Target 
Distribution



• CGMH performs constrained generation by: 
1. Pretrain Neural Language Model (e.g. GPT2); 
2. Iterative Editing:  

1) Start from a initial sentence ;  
2) Propose a new sentence  from , and accept/

reject the action. Action proposal include: 
I. Replacement: change a word to another one 
II. Insertion: add a word 
III. Deletion: remove a word  

𝑥0
𝑥𝑡 𝑥𝑡−1
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CGMH: Main Idea

BMW, the sports car of daily life
BMW, the sports car of today’s life
BMW, the sports car of future life
BMW, the sports car of new life
BMW, the sports car of happy life

…
CGMH [N. Miao, H. Zhou, L. Mou, R. Yan, Lei Li, AAAI19]
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CGMH Iteratively Edits Candidates

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of dailyfuture 

life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life
11 [Output] BMW , the sports car of the future



• Keywords to sentence generation (hard 
constraints) 
– Aim: To generate fluent sentences containing 

the given set of words. 
– Dataset: A subset of one-billion-word corpus 

(5M) 
– Input: Keywords random selected from the 

target sentence. 

– Constraint: 1keywords occur in sentence
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Evaluation 1: Keyword to Sentence



NLL(↓)
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#keywords
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GBS
CGMH

Scores of human evaluation (↑)

0
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0.35
0.53

0.7

#keywords
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LSTM w/ asyn-B/F
GBS
CGMH 91

CGMH generates better sentences from 
keywords



• Unsupervised paraphrase generation (soft 
constraints) 
– Aim: To generate sentences with similar 

meaning of the given one. 
what’s the best plan to lose weight  

➜ what’s the best way to slim down quickly
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Evaluation 2: Paraphrase Generation
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CGMH is the first unsupervised model to achieve 
comparable results with supervised models.



• Machine learning models are vulnerable to 
noises and attacks.  

• Generating fluent adversarial text is challenging, 
due to the discreteness in text! (Ebrahimi et al., 2018; 
Alzantot et al., 2018) 

• Our MHA achieves higher attack success rate
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Extension: Adversarial Fluent Sentence 
Generation w/ Iterative Editing

MHA [H. Zhang, N. Miao, H. Zhou, Lei Li, ACL19a]



• Blackbox b-MHA 
– Black-box setting 
– Pre-select set  with a 

forward language model 
and a backward language 
model

𝑄
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Adversarial Sentence Generation via 
MCMC

Forward 
language model

Backward 
language model

𝐿𝑀(𝑤 |𝑥[1:𝑚−1]) 𝐿𝑀𝑏(𝑤 |𝑥[𝑚+1:𝑛])
Score 

𝑆𝐵(𝑤 |𝑥) = 𝐿𝑀( ⋅ ) ⋅ 𝐿𝑀𝑏( ⋅ )

Select top-  wrods𝑘 Set 𝑄

• Whitebox w-MHA 
• White-box setting 
• Pre-select set  with a 

forward language model, a 
backward language model and 
the similarity of embedding 
variation and adversarial 
gradients.

𝑄

Adversarial 
gradient

Embedding 
variation

𝑆𝐵(𝑤 |𝑥) 𝜕~𝐿
𝜕𝑒𝑚

𝑒𝑚 − 𝑒
Score 

𝑆W(𝑤 |𝑥) = 𝑆𝐵( ⋅ ) ⋅ 𝑆𝑖𝑚( 𝜕~𝐿
𝜕𝑒𝑚

, 𝑒𝑚 − 𝑒)
Select top-  wrods𝑘 Set 𝑄

Reuse the CGMH algorithm



• MHA achieves higher attack success rate with fewer 
invocations, and gives lower perplexity,  than the genetic 
approach (Alzantot et al., 2018) baseline. 

• Examples generated by MHA may improve the 
adversarial robustness and the classification accuracy 
after adversarial training.
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Higher Attack Success Rate 
and Improved Text Classifier!

Accuracy w/ AdversariesAttack Success Rate

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



• CGMH is deployed in a large-scale online 
ads creation platform 

• Active used by 100,000 merchants and 
organizations 

• Adoption rate: ~75%
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Impact

Comfortable sports shoes, 
a breathing pair of man's 
shoes, accompanying you 
in autumn

“Autumn” 
“Sports shoes”
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Multimodal Machine Writing

Xiaomingbot [R. Xu, J. Cao, M. Wang, J. Chen, H. Zhou, Y. Zeng, Y. 
Wang, L. Chen, X. Yin, X. Zhang, S. Jiang, Y. Wang, Lei Li, ACL 2020] 

GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, M. Jiang, 
IJCAI19b] 

Jersey Number Recognition with Semi-Supervised Spatial Transformer 
Network [G. Li, S. Xu, X. Liu, Lei Li, C. Wang, CVPR-CVS18]



• Tencent: Dreamwriter, started in 2015.9 
• Fast Writer Xiaoxin: Xinhuanet, started in 

2015.11 
• Xiaomingbot: ByteDance, started in 2016.8 
• Xiaonan: Southern Weekend, started 

2017.1 
• Wibbitz: USA Today 
• Heliograf: Washington Post
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Automatic News Writing in Real-world



Winning 2017 Wu Wen-tsün Award in AI from CAAI 
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Xiaomingbot  
Automatic News Writing System

600,000 
articles

150,000  
followers

6 
lang



Runxin Xu, Jun Cao, Mingxuan Wang, Jiaze Chen, Hao Zhou, Ying Zeng, Yuping Wang, Li Chen, Xiang 
Yin, Xijin Zhang, Songcheng Jiang, Yuxuan Wang, Lei Li, ACL 2020.
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Xiaomingbot : Multilingual Robot News Reporter
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Snooker Commentary Generation 
Combining Visual Understanding with Strategy Prediction

GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, M. Jiang, IJCAI19b] 



• Transformer, LSTM & Softmax: Basic neural generation nets for text 
• Disentangled Latent Representation 

– VTM: Learning Latent Templates in Variational Space 
– DSS-VAE: Disentangled syntax and semantic representation 

• DEM-VAE: Self identifying meaningful clusters with corpus 
• MGNMT:  

– integrate four language capabilities together 
– Utilize both parallel and non-parallel corpus 

• CGMH: Bayesian approach to constrained text generation 
– Able to learn with raw data only 

• Multimodal Machine Writing 
– Xiaomingbot system: 600k articles and 150k followers 

• Deployed in multiple online platforms and used by over 100 millions 
of users
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Summary



Recap: DGM Taxonomy

Maximum Likelihood Estimation

VAE 
VTM

GAN

pθ(x) ⟷ pdata(x)

RNN, LSTM 
Transformer

Adversarial Learning

Explicit Density

Auto-
Regressive 

Factorization

Intractable DensityTractable Density

Parallel 
Factorization

Markov 
Factorization

Markov 
Transformer

Glancing 
Transformer 

NAT

Latent 
Variable Model

Implicit Density

Energy-based

Conditional 
EBM

CGMH 
MHA 

TSMH

Constrained 
PM

GSN



• Joint w/ Hao Zhou, Rong Ye, Ning Miao, 
Wenxian Shi, Zaixiang Zheng, Huangzhao 
Zhang, Ying Zeng, Jiaze Chen, Han Zhang 

• Contact: lileilab@bytedance.com
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