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Outline

« Simultaneous Speech Translation (SST) and challenges

 INfiNiISST: high-quality low-latency unbounded SST
o Model design
o Training data construction
o Inference on unbounded SST
o Experiment Evaluation



Simultaneous Speech-to-text Translation

* Read the audio signals of speech in one language, and
translate to the text in another language while speaker
speaks (SST).
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Traditional Cascaded SST System
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Speech Chunk Seg. of Seg. of
Transcript Translation
- Drawbacks:

1. Computationally inefficient
2. Error propagation:
Wrong/error transcript recognition = Wrong translation



End-to-end SIST
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Speech Chunk Seg. of
Translation

- Goal: End2end streaming ST needs to balance the latency and
guality, and generate translations based on the partial speech
chunk with a single model.



Challenges for SST

v| Low Latency

v'| Applicability
V] .

_ow latency is
required for better
user experience. —>
Translate as early as
possible.

—

High Accuracy

Minimal Flicke

@More context is

required to improve
speech translation.
—> Wait as long as
possible.
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Challenges of Unbounded Speech

* The audio is looooooooong!

o e.g. 1 hour talk
o Out of memory (OOM)

o Out of training distribution (OOD)

* How to avoid OOM and OQOD, while achieving good trade-
off between the translation quality and the system latency?



Prior Works

* Most of prior SST works are on segmented speech, usually
less than 30 seconds, not directly applicable to unbounded

speech.
o MoSST: Learning When to Translate for Streaming Speech, ACL 2022

« StreamAtt is the only open-sourced one working on
unbounded speech, but it is not computationally efficient
o It preserves recent speech and generated translations.

o Every step, the features of preserved speech and translation are
recomputed. THIS STEP is COSTLY.

Papi et al. StreamAtt: Direct Streaming Speech-to-Text Translation with Attention-based Audio History Selection. ACL 2024
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Outline

« Simultaneous Speech Translation (SST) and challenges

=+ InfiniSST: high-quality low-latency unbounded SST
o Model design
o Training data construction
o Inference on unbounded SST
o Experiment Evaluation
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Introducing InfiniSST — Key |Idea

* Ensure translation quality:
o pre-trained speech encoder + LLM

* Reducing latency:
o avoid recomputation = incremental computation
o Chat-style interleaving read/write policy

* Enable unbounded speech:
o technigques to enable long context

Siqi Ouyang, X1 Xu, Lei Li. InfiniSST: Simultaneous Translation of Unbounded Speech with Large Language Model. ACL 2033,



INfiINISST
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Speech Encoding

» Speech chunk: 960ms (48x20ms) Adapter

 Chunkwise-causal encoder n n
8 )

o Bidirectional inside chunk
o Causal between chunks

o Sliding window w?*

o Rotary position embedding

Streaming Speech Encoder (wav2vec2)

« Speech-to-Token Embedding
Adapter

o Map to LLM embedding space r
o Shrink length by 4 -

- 1 bought a boq?k today 14



Multi-turn LLM Decoding
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Large Language Model (Llama-3.1-8B-Instruct)

<SYSTEM><INSTRUCTION><USER>

<EOT><ASSISTANT> FX <EOT><USER>

« Multi-turn dialogue format:

<EOT><ASSISTANT> 4> K 3L | A 35 <EOT>

* Instruction: Translate the following speech from <LangX> to

<LangY>.

« LLM stops the current turn of translation at <EOT>
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Training Data Construction

 MuST-C: triplets of <speech, transcript, translation>.

o Each triplet is a segmented utterance from a complete TED
Talk.

 Data trajectories for training:

o Trajectory is an action sequence (s1, t1, s2, t2, ...) alternating
between speech reading and translation writing.

o Each speech reading is of duration 960 ms
o Each translation writing ends with <EOT>
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Speech-Text Trajectory Construction

Aligning speech frames with transcript tokens
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Speech-Text Trajectory Construction

Aligning speech frames with transcript tokens
Aligning transcript tokens with translation tokens

| | | |
| | |
| | |
| | |
Transcript: 1| bought lal book ! today

O simniir \ W

Translation: SR LT R P




Speech-Text Trajectory Construction

Aligning speech frames with transcript tokens
Aligning transcript tokens with translation tokens

Chunks:

c, /1%2

Translation: B 45 K X T K H

Monotonically grouped by speech chunks
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Data Construction: Robust Segments

« Segmented speech utterances primarily consist of human
speech; however, non-linguistic sounds (e.g., laughter,
applause) are also present.

* To enhance the robustness of the SST dataset, we cut the
entire TED Talk evenly into robust segments that each span
30 speech chunks, I.e., 28.8 seconds.
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Data Construction: Multi-Latency Augment

 The trajectory we just built might be “too perfect”.

« We randomly select m € [1, M], so that every m
neighbouring steps of a trajectory is merged together.

o Given m=2, a trajectory (s1, t1, s2, t2, s3, 13, s4, t4) becomes
(s1+s2, t1+t2, s3+s4, t3+t4)

* This constructs trajectories with larger latency.
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INfiNISST Training

« Train INfiNiISST with multi-latency augmented trajectories
from robust segments of MuST-C dataset.

* Two-stage training
o Freeze LLM, finetune speech encoder and adapter
o Freeze speech encoder and adapter, finetune LLM

* Loss only applied to translation entries of trajectory,
including <EOT> tokens.
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Inference on Unbounded Speech
« Unbounded speech input are cut into chunks of 960ms.
» Latency multiplier m is selected.

« Perform inference after every m chunks are received.
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Inference on Unbounded Speech

« Both LLM and speech
encoder maintain KV INfiNiISST’s Speech Encoder Cache

cache before RoPE.

K\/ Sliding
e Speech encoder keeps Discarded Window
P P Cache of Size wS

KV cache using the
sliding window

mechanism (size=10) Refative| S g Il e
Position




Inference on Unbounded Speech

« LLM and speech encoder maintain KV cache before RoPE.

« Atstep i, we receive chunks im,im+1,..,(i+1)m—-1

L INfiNiSST’s LLM Decoder Cache Management
* win size=1000 ) . , R,
KV <INSTRUC _ S!Idlﬂg Curren
Cache TION> Discarded Window Tolien
ac of Size w
Rela.tllve 0,1,2,...]INS|-1 Discarded INS|,....[INS|+wt-1 || [INS|+wt
Position s




Outline

« Simultaneous Speech Translation (SST) and challenges

 INfiNiISST: high-quality low-latency unbounded SST
o Model design
o Training data construction
o Inference on unbounded SST

—> o Experiment Evaluation
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Dataset

« MuST-C
o Languages: En-Es, En-De, En-Zh
o Training: ~400 hours each

 Data filtering for En-Zh

o CometKiwi + Towerlnstruct

 Trajectory and robust segment construction as mentioned
before
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Evaluation Metrics

* Quality
o BLEU & COMET

« Latency

o StreamLAAL: a variant of LAAL that uses mWERSegment to
segment the document translation hypothesis to align with each
reference sentence, then compute LAAL on each (hyp, ref) pair
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Baselines

* AlignAtt

o Works on segmented level SST

o Use attention scores between translation and speech to determine to
stop translating or not

o StreamAtt

o Built on top of AlignAtt, same stopping criterion

o Preserves fixed length text history, and then cut audio history based on
attention scores of preserved text

o StreamAtt+: forbid audio cutting when audio is shorter than 10 s
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INfiNISST I1s much Faster than StreamAtt
when evaluated with Computation Cost
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INfiNISST I1s much faster than StreamAtt
when evaluated with Computation Cost
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INfiNISST Serving System

Online Batching + Flashinfer
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Highlights of InfiniSST

» Ensure translation quality:
o pre-trained speech encoder + LLM

* Reducing latency:

o Speech encoder: Chunk-wise unidirectional attention and in-chunk
bidirectional att

o Incremental computation =» avoid recomputation
o Chat-style interleaving read/write policy

« Enable unbounded speech (long context)

o Sliding window KV cache for speech encoder
o System Prompt caching + sliding window cache for LLM decoder
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