# **Breaking the Language Barrier with Neural Machine Translation**

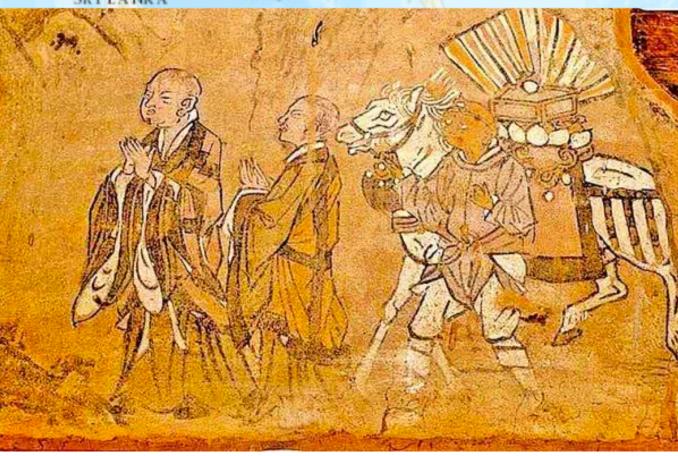
Lei Li University of California Santa Barbara leili@cs.ucsb.edu 10/12/2022



# Once upon a time ...

- Septuagint, translated from Hebrew Bible to Greek, mid 3rd century BCE
- Translating Buddhist texts written in Sanskrit to Chinese
  - Kumārajīva (कुमारजीव), 344-413 CE, translated 35-74 books
  - Xuanzang 602-664 CE, travel from Ancient China to India in 17 years, translated 75 books from Sanskrit to Chinese

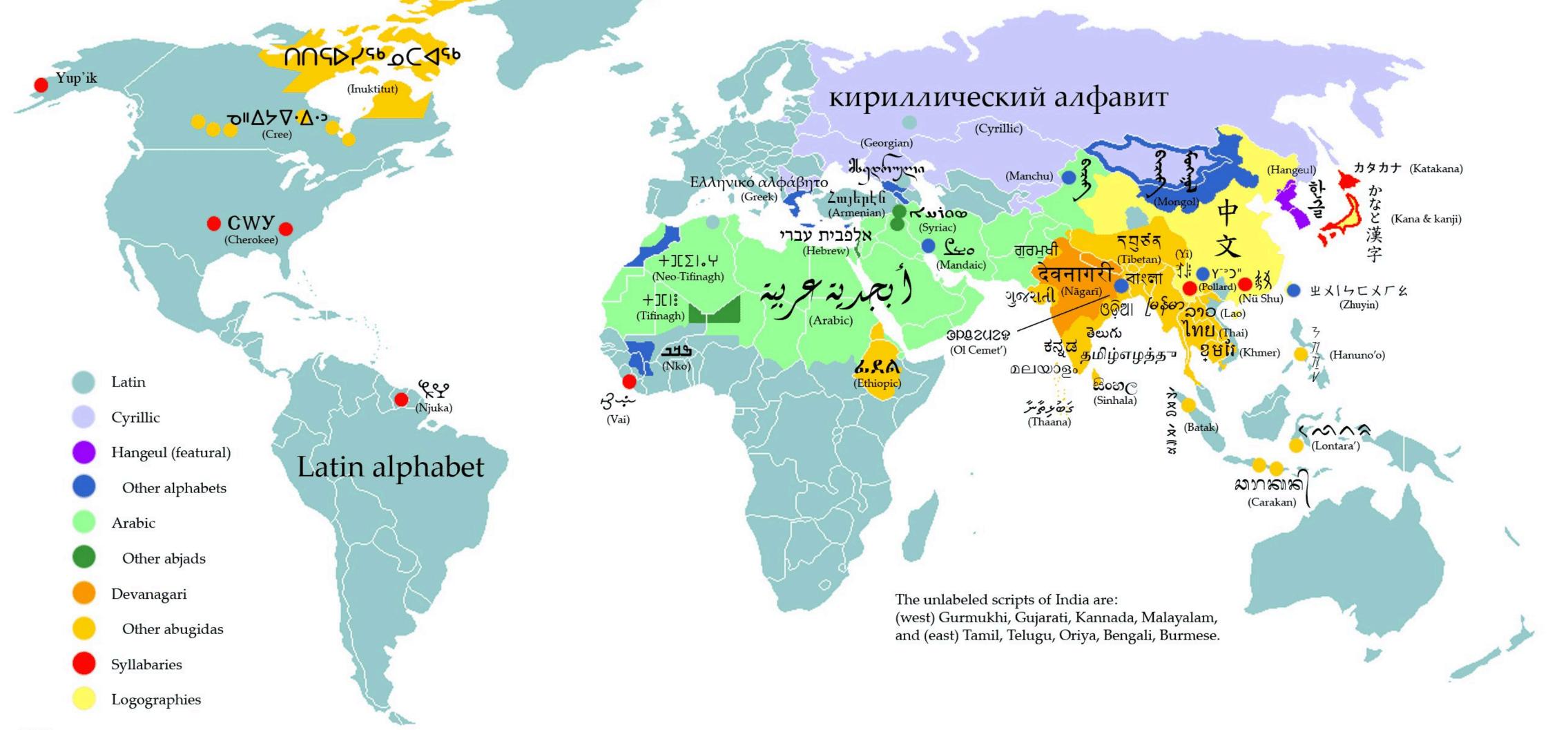




Xuanzang travelling, Dunhuang mural, China

# 7000 languages around the world

# How to communicate efficiently across languages? Machine Translation

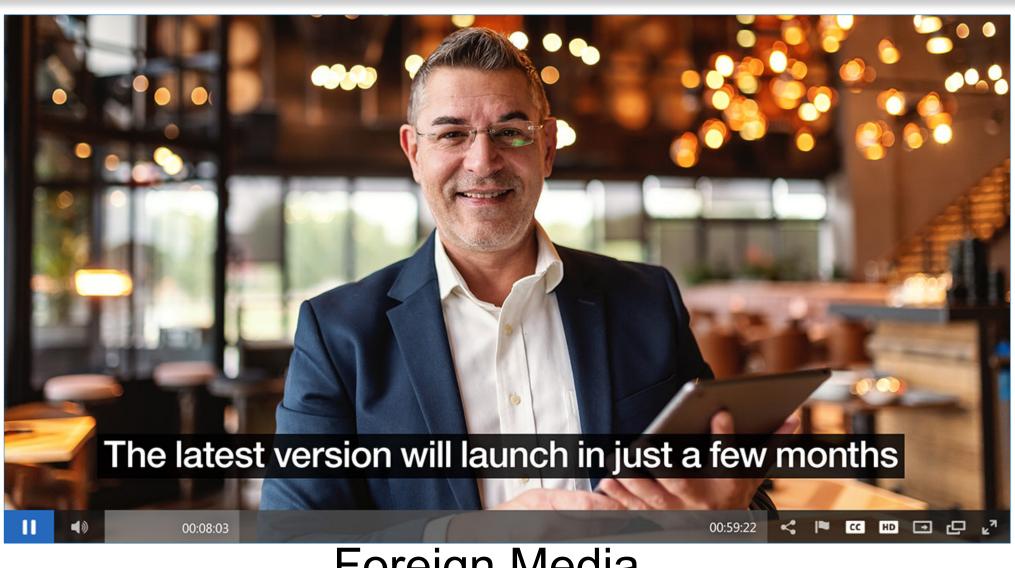


上带之限 000.0000008.01





## **Cross Language Barrier with Machine Translation**



#### Foreign Media



Tourism



#### **Global Conferences**



International Trade







### When you really need Machine Translation

Rimi Natsukawa live streaming on Tiktok July, 2021





# INA 0 5 CHN 0 10 TOKYO 2020

5-10

104110-2008



CONTRACTOR OF



#### **Machine Translation has increased international trade by over 10%**



#### **Does Machine Translation Affect International Trade? Evidence** from a Large Digital Platform

#### Erik Brynjolfsson,<sup>a</sup> Xiang Hui,<sup>b</sup> Meng Liu<sup>b</sup>

<sup>a</sup>Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142; <sup>b</sup>Marketing, Olin School of Business, Washington University in St. Louis, St. Louis, Missouri 63130

Contact: erikb@mit.edu, () http://orcid.org/0000-0002-8031-6990 (EB); hui@wustl.edu, () http://orcid.org/0000-0001-7595-3461 (XH); mengl@wustl.edu, ( http://orcid.org/0000-0002-5512-7952 (ML)

Received: April 18, 2019 Revised: April 18, 2019 Accepted: April 18, 2019 Published Online in Articles in Advance: September 3, 2019

https://doi.org/10.1287/mnsc.2019.3388

Copyright: © 2019 INFORMS

Abstract. Artificial intelligence (AI) is surpassing human performance in a growing number of domains. However, there is limited evidence of its economic effects. Using data from a digital platform, we study a key application of AI: machine translation. We find that the introduction of a new machine translation system has significantly increased international trade on this platform, increasing exports by 10.9%. Furthermore, heterogeneous treatment effects are consistent with a substantial reduction in translation costs. Our results provide causal evidence that language barriers significantly hinder trade and that AI has already begun to improve economic efficiency in at least one domain.

History: Accepted by Joshua Gans, business strategy. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2019.3388.

Keywords: artificial intelligence • international trade • machine translation • machine learning • digital platforms

MANAGEMENT SCIENCE

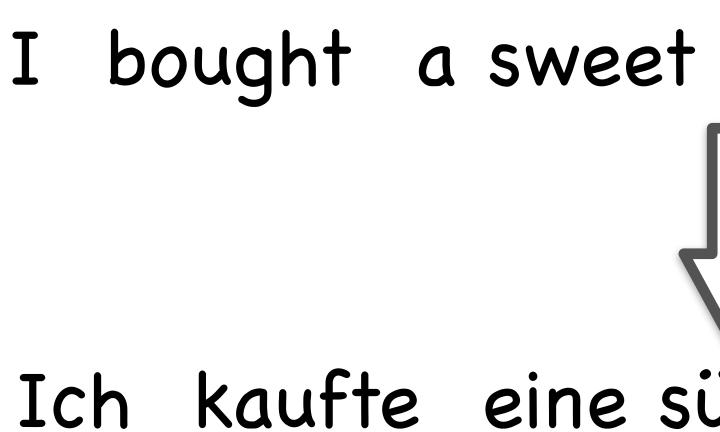
Vol. 65, No. 12, December 2019, pp. 5449-5460 ISSN 0025-1909 (print), ISSN 1526-5501 (online) Equivalent to make the world smaller than 26%

#### study on ebay



7

#### Translating information from one language to another



## **Machine Translation**

# I bought a sweet persimmon in the store Ich kaufte eine süße Persimone im laden



# **Types of Machine Translation**

- Translating information from one language to another Number of Languages: • Media: – Bilingual – (Text) Machine Translation Multilingual
- - Speech Translation: Speech-to-Text or Speech-to-speech translation
  - Visually Machine Translation: Text translation with additional image
- Genre:
  - Sentence level MT
  - Document level MT
  - Dialog Translation





# Why automatic Machine Translation?

- Too expensive to hire human translator - e.g. touring, shopping, restaurant eating in a foreign country
- Too much effort for human to translate massive text
  - can tolerate imprecise translation
- Need instantaneous translation
  - e.g. in international conference

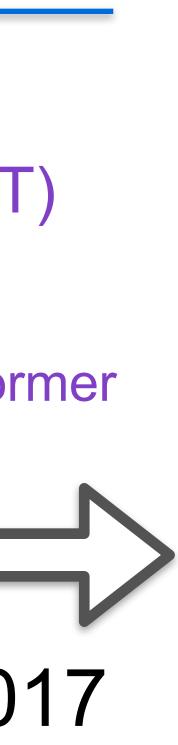




# **A Brief History of Machine Translation**

| Rule-based MT:<br>Georgetown-IBM<br>automatic<br>translation of<br>60 sentences |                                                         |    | Sys               | Systran |                              | Example-based MT<br>Makoko Nagao |                              | eq2Seq  | MT (NMT            |
|---------------------------------------------------------------------------------|---------------------------------------------------------|----|-------------------|---------|------------------------------|----------------------------------|------------------------------|---------|--------------------|
| 19                                                                              | Du                                                      |    | 66                | 197     | 76                           | 1980s -                          | - 2000s                      | Atte    | ntion<br>Transforr |
|                                                                                 | 19                                                      | 54 | 19                | 68      | 19                           | 84                               |                              | 2014, 2 | 2015, 201          |
| de<br>cry                                                                       | lation as<br>coding in<br>ptography<br>Narren<br>Neaver |    | report:<br>vinter | fored   | veather<br>casts in<br>anada | (                                | tical MT<br>SMT)<br>, Google |         |                    |





11

# **Commercial Machine Translation**

- Google translate: 109 languages, separate app, support text/ document translation, image translation, and speech translation
- Microsoft translate: 87 languages for text
- Baidu translate: 200+ languages
- ByteDance VolcTrans: 104 languages
- DeepL: good at European languages
- Youdao Translate: integrated with its own dictionary app
- Tencent Translate: native in wechat, and separate app
- NiuTrans: specialized in Chinese to many languages



12



- Basics of Neural Machine Translation – Model, Data, Training, Low-resource
- Why is MT still hard?
- Multilingual MT

  - Learning language-specific sub-network (LaSS)
  - Counter Interference Adapter (CIAT)
  - Graformer: Grafting Pre-trained Language Models
- Speech-to-Text Translation
  - Offline End-to-end ST: ConST, STEMM, Chimera, LUT, CosTT
  - Simultaneous Interpretation (Streaming ST)

# Outline

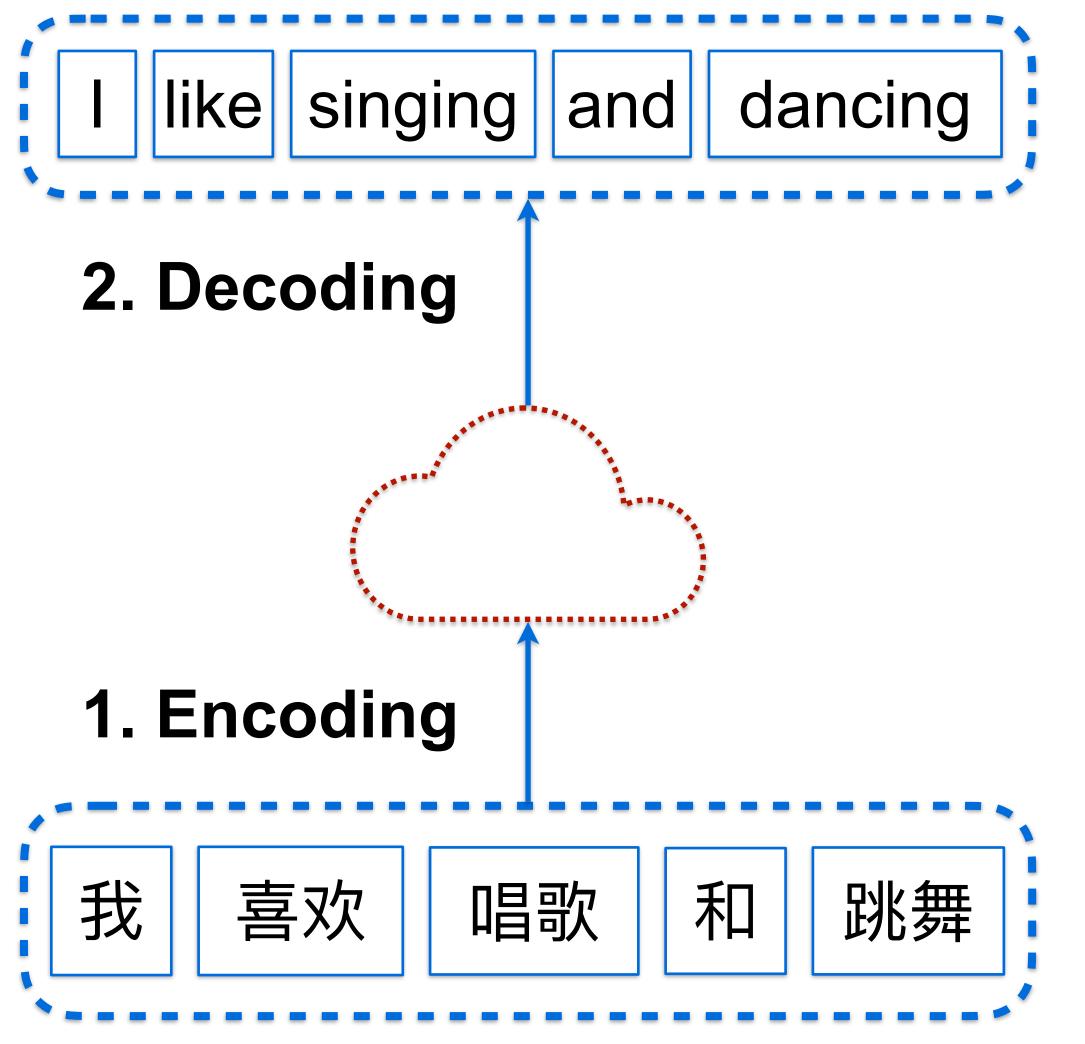
– Contrastive Multilingual Training with Randomly Aligned Substitution (mRASP2)

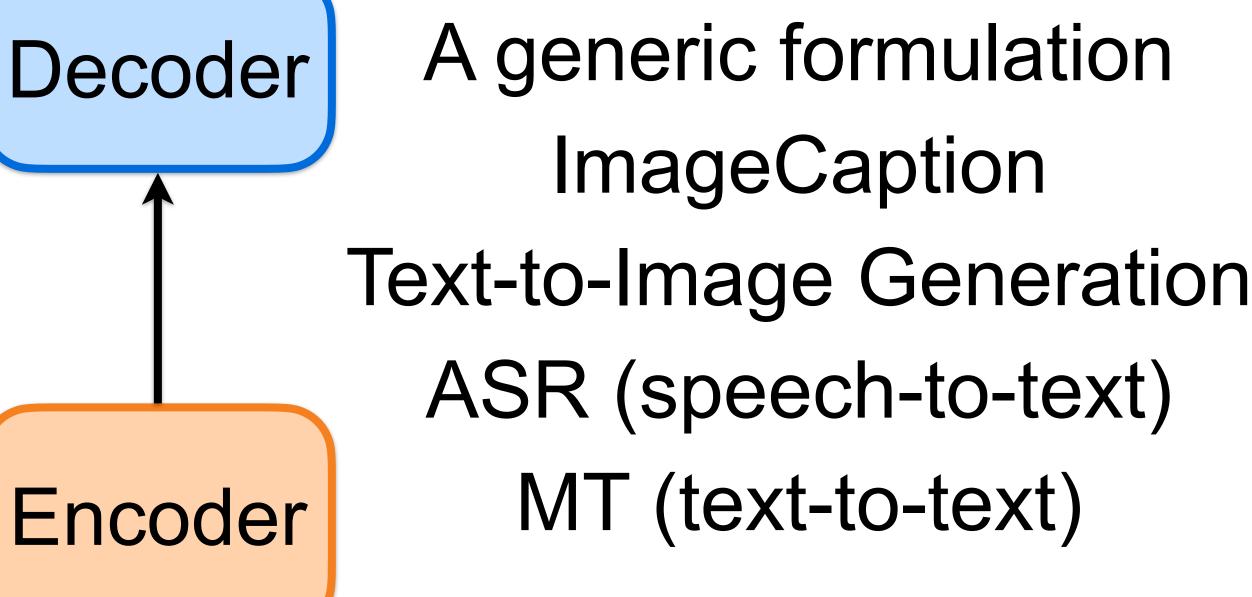




# **Encoder-Decoder Framework**

### Translation as an encoding-decoding problem







### **Mathematical Formulation of MT** MT model as a function mapping from I like singing and dancing. source sequence to target sequence $P(Y|X;\theta) = \prod P(y_t|y_{< t}, x; \theta)$ Decoder $P(y_t | y_{< t}, x; \theta) = f_{\theta}(x_{1 \dots k}, y_{1 \dots t-1})$ Training: finding the optimal model Encoder Inference: decode the best target text 我喜欢唱歌和跳舞。 $Y^{\star} = \operatorname{argmax} P(Y | X; \theta)$

- parameter  $\theta$
- given an input







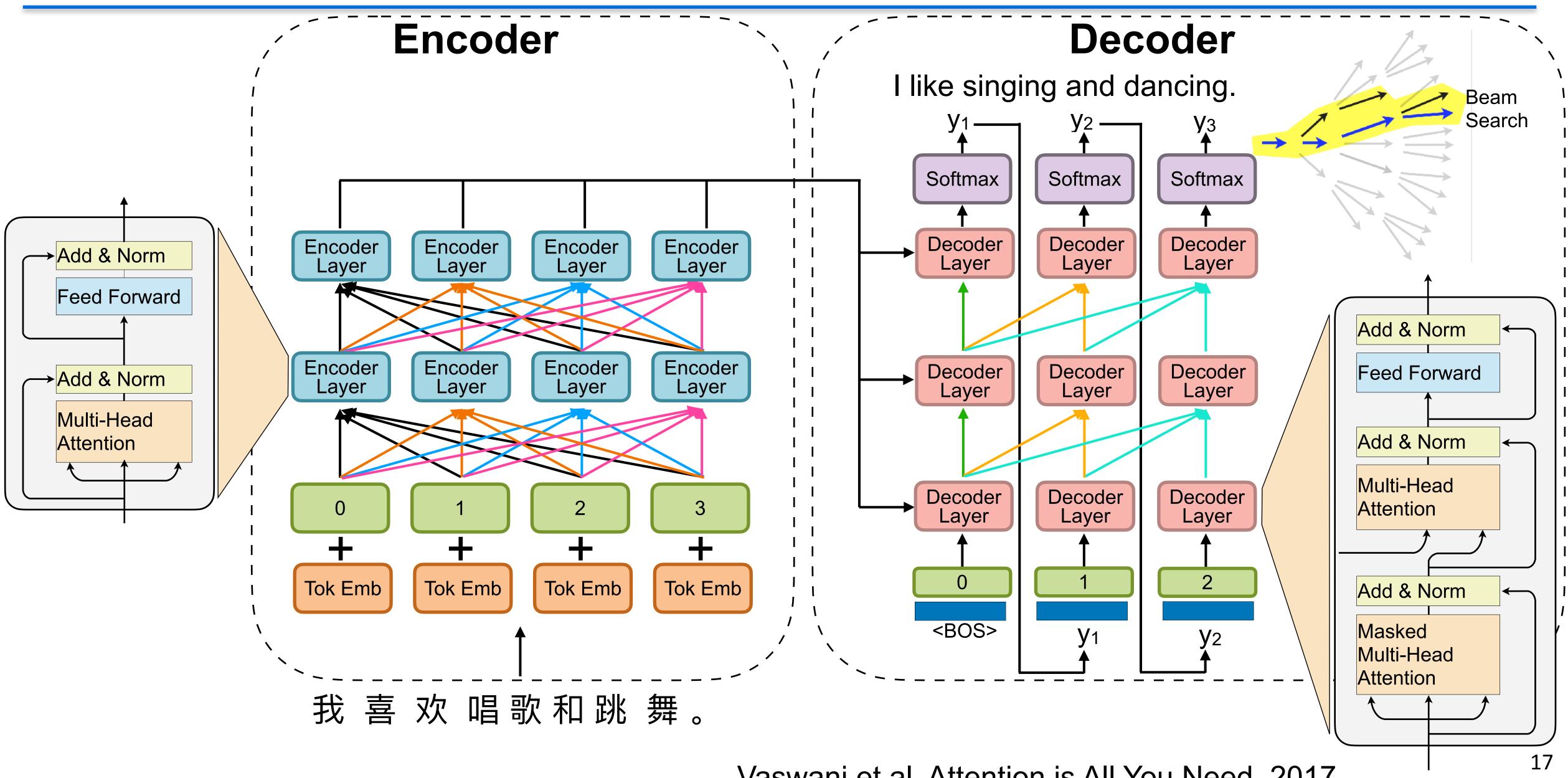
- Transformer: the most popular model for MT since 2017
  - use attention+FFN, many variations
- Sequence-to-sequence (seq2seq): using multiple layers of (bidirectional) LSTM/GRU as the encoder and decoder, 2014
- CNN MT: using convolutional neural networks at encoder/decoder

# Neural MT Models





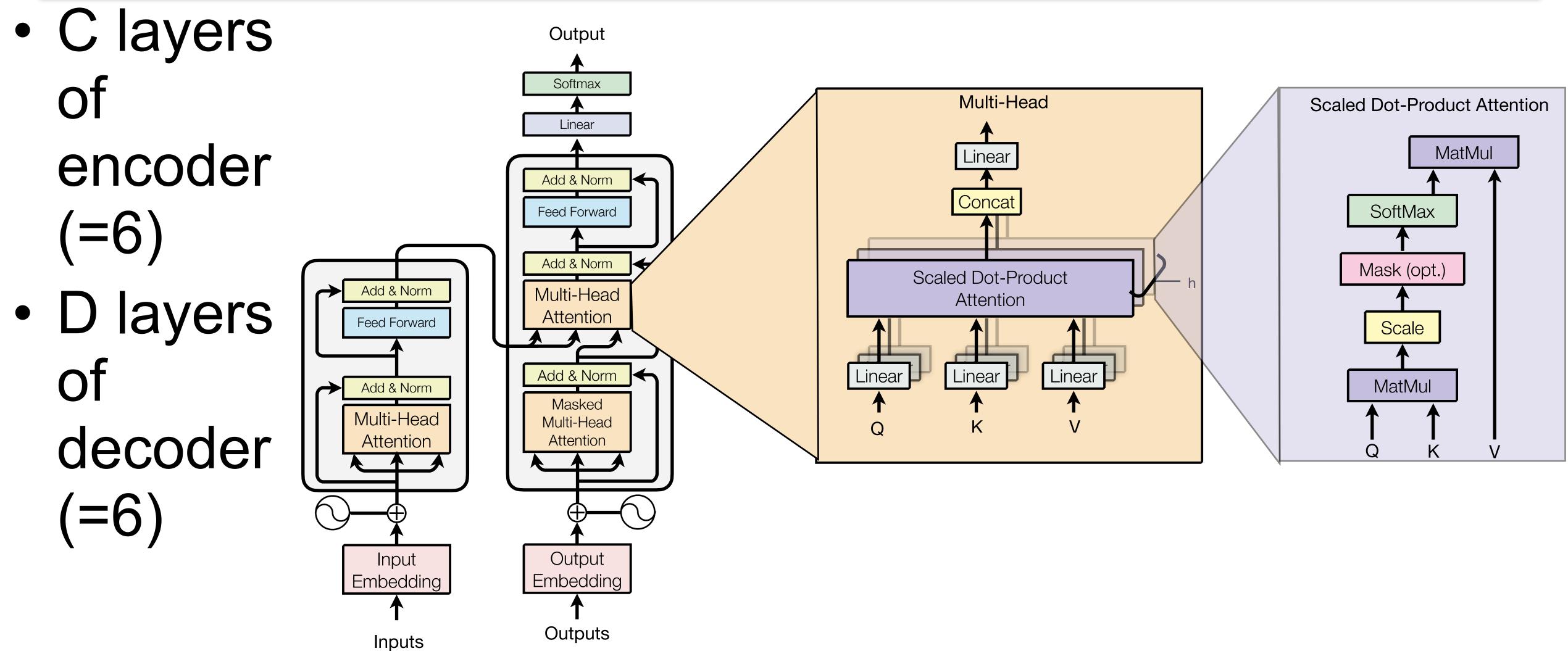




## Transformer

Vaswani et al. Attention is All You Need. 2017

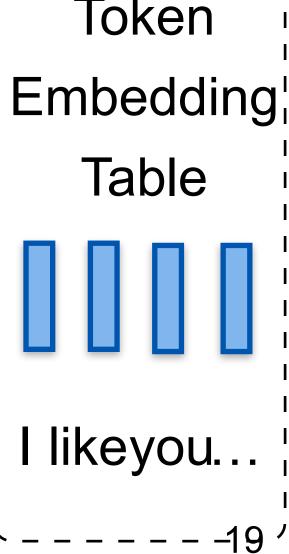
# Multi-head Attention Layer (MHA)





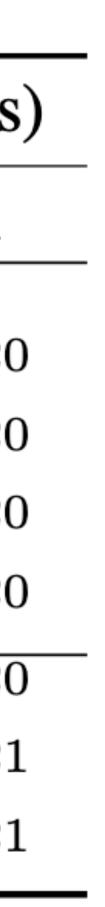
## **How does Transformer Translate?**





# **Translation Performance on WMT14**

| Madal                           | BL          | EU          | Training Cost (FLOPs) |                    |  |  |
|---------------------------------|-------------|-------------|-----------------------|--------------------|--|--|
| Model                           | EN-DE       | EN-FR       | EN-DE                 | EN-FR              |  |  |
| ByteNet [15]                    | 23.75       |             |                       |                    |  |  |
| Deep-Att + PosUnk [32]          |             | 39.2        |                       | $1.0\cdot 10^{20}$ |  |  |
| GNMT + RL [31]                  | 24.6        | 39.92       | $2.3\cdot 10^{19}$    | $1.4\cdot 10^{20}$ |  |  |
| ConvS2S [8]                     | 25.16       | 40.46       | $9.6\cdot 10^{18}$    | $1.5\cdot 10^{20}$ |  |  |
| MoE [26]                        | 26.03       | 40.56       | $2.0\cdot 10^{19}$    | $1.2\cdot 10^{20}$ |  |  |
| Deep-Att + PosUnk Ensemble [32] |             | 40.4        |                       | $8.0\cdot 10^{20}$ |  |  |
| GNMT + RL Ensemble [31]         | 26.30       | 41.16       | $1.8\cdot 10^{20}$    | $1.1\cdot 10^{21}$ |  |  |
| ConvS2S Ensemble [8]            | 26.36       | 41.29       | $7.7\cdot 10^{19}$    | $1.2\cdot 10^{21}$ |  |  |
| Transformer (base model)        | 27.3        | 38.1        | 3.3 •                 | $3.3\cdot 10^{18}$ |  |  |
| Transformer (big)               | <b>28.4</b> | <b>41.0</b> | 2.3 ·                 | $2.3\cdot 10^{19}$ |  |  |







### • translate.volcengine.com





21

# Why is MT challenging?



# Why is MT challenging?

- Polysemy
  - He deposited money in a bank account with a high interest rate.
  - Sitting on the bank of the Mississippi, a passing ship piqued his interest.
- New entity names
   COVID-19
- Complex structure
- Ellipsis (i.e. omission)



### 周四经济数据面,美国劳工部报告称,截至8月28日当周美国首次申请失业救济人数为 34万,降至2020年美国新冠疫情危机爆发以来的最低点。市场预计该数字为34.5万。

### Google Translation (2021.9.1)

On Thursday's economic data, the U.S. Department of Labor reported that as of August 28, the number of people applying for unemployment benefits for the first time was 340,000, which dropped to the lowest point since the outbreak of the new crown crisis in the United States in 2020. The market expects the number to be 345,000.

### VolcTrans (2021.9.1)

On Thursday's economic data, the U.S. Labor Department reported that the number of first-time jobless claims in the United States for the week ending August 28 was 340 thousand, falling to the lowest level since the COVID-19 Epide COVID-19 epidemic crisis broke out in the United States in 2020. The market expects the number to be 345 thousand.







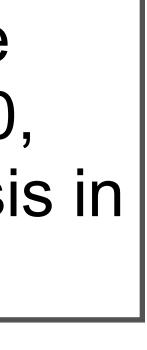
#### 周四经济数据面,美国劳工部报告称,截至8月28日当周美国首次申请失业救济人数为 34万,降至2020年美国新冠疫情危机爆发以来的最低点。市场预计该数字为34.5万。 Bing Translation (2021.9.1) On Thursday, the \*Labor Department reported that 340,000 people applied for \* unemployment benefits for the week ended Aug. 28, the lowest level since the \* crisis began in 2020. The market expects the figure to be 345,000.

### DeepL (2021.9.1)

On Thursday's economic data front, the U.S. Labor Department reported that the number of first-time U.S. jobless claims for the week ended Aug. 28 was 340,000, falling to the lowest point since the outbreak of the new U.S. crown epidemic crisis in 2020. The market expected the figure to be 345,000.









# **Complex sentences**

#### 周四美股成交额冠军苹果(153.65, 1.14, 0.75%)公司收高0.75%, 报153.65美元, 创历 史收盘新高,成交108.9亿美元,市值逼近2.54万亿美元。 Bing Translation (2021.9.1) U.S. stock market champion Apple Inc (153.65, 1.14, 0.75 percent) closed up 0.75 percent at \$153.65 on Thursday, a record closing high of \$10.89 billion, giving it a market capitalization of nearly \$2.54 trillion.

### DeepL (2021.9.1)

cap approaching \$2.54 trillion.

#### Thursday's U.S. stock turnover leader Apple (153.65, 1.14, 0.75%) closed 0.75% higher at \$153.65, an all-time closing high, with \$10.89 billion traded and a market



26

### 他的爷爷和奶奶没见过他的姥姥和姥爷。

- Google Translate: His grandpa and grandma have never met his grandma and grandpa.
- Correct: His father's parents never met his mother's.



### Acronym and incorrect word segmentation

- 一些立陶宛人士表示,<u>中立</u>关系恶化,影响最大的当 属立陶宛的出口企业。
- Google Translate: Some Lithuanians said that the deterioration of Sino-Lithuanian relations has affected Lithuanian export companies the most.
  - Bing Translate: Some Lithuanians say the deterioration in neutral relations has affected Lithuania's exporters the most.



这个人很牛 MT1/MT3: This person is very cattle. MT2: This man is a cow. MT4: This guy's good. MTO: This guy is awesome.

# Culture and Slang





variation of auxiliary function words or symbols

这个人很牛 MT1: This person is very cattle. MT3: This person is very cattle. MTO: This guy is awesome.

这个人非常牛。 MT1: This person is very cattle. MT3: This person is very cattle. MTO: This guy is awesome.

这个人很牛。 MT1: This person is very bullish. MT3: This man is very good. MT4: This guy is good. MTO: This guy is very good.

#### 这个人很牛!

MT1: This person is very cow! MT3: This man is very good. MT4: This man is good! MTO: This guy is awesome!





## 乔丹最早周日伤愈复出

MT0: Jordan came back from his first injury on Sunday.

MT1: Jordan first recovered from injury on Sunday

## Robustness

### 乔丹最早周日伤愈复出。

MTO: Jordan came back from injury on Sunday.

MT1: Jordan returned from injury on Sunday.

Reference: Jordan may return from injury as early as this Sunday.



# **MT: From fluency to nativeness**

# MT1: 不, 思嘉, 伟大的种子永远不会在我身上。 MT0: 不, 思嘉, 伟大的种子从来就不存在。 Ref: 不, 斯佳丽, 我根本就不是当大人物的料。

- No, Scarlett, the seeds of greatness were never in me.



# (Average) Human Level Translation

You say that you love rain, but you ope n your umbrella when it rains. You say that you love the sun, but you f ind a shadow spot when the sun shine S.

You say that you love the wind, but you close your windows when wind blows. This is why I am afraid, you say that yo u love me too.

- MT: 你说你喜欢雨, 但雨下的 时候你打开雨伞。 你说你爱太阳,但当太阳照耀 时,你发现了一个阴影斑点。 你说你喜欢风,但是当风吹起 的时候你会关上窗户。 这就是为什么我害怕,你说你 也爱我。



# **Expert Level Translation**

诗经体:

子言慕雨,启伞避之。子言好阳,寻荫拒之。 子言喜风,阖户离之。子言偕老,吾所畏之。

离骚版:

君乐雨兮启伞枝, 君乐昼兮林蔽日, 君乐风兮 栏帐起, 君乐吾兮吾心噬。

七律:

江南三月雨微茫,罗伞叠烟湿幽香。夏日微醺 正可人, 却傍佳木趁荫凉。霜风清和更初霁, 轻蹙蛾眉锁朱窗。怜卿一片相思意,犹恐流年 拆鸳鸯。

网络咆哮体:

你有本事爱雨天,你有本事别打伞 啊!你有本事爱阳光,你有本事别 乘凉啊!!你有本事爱吹风,你有 本事别关窗啊!!!你有本事说爱 我、你有本事捡肥皂啊!!!









# **Multilingual Machine Translation**



# **Multilingual Neural Machine Translation**

- Bilingual NMT: one model for each translation direction • Multilingual NMT: Develop one model to translate between all language pairs.
- Why? Motivation
  - Potential better performance: Languages with rich resource could benefit those with low resource
  - Economic: only one model deployment versus of many deployments. Simpler workload and job management and scheduling.
    - vs Bilingual models: Many languages would have much few requests but still need to occupy the servers.



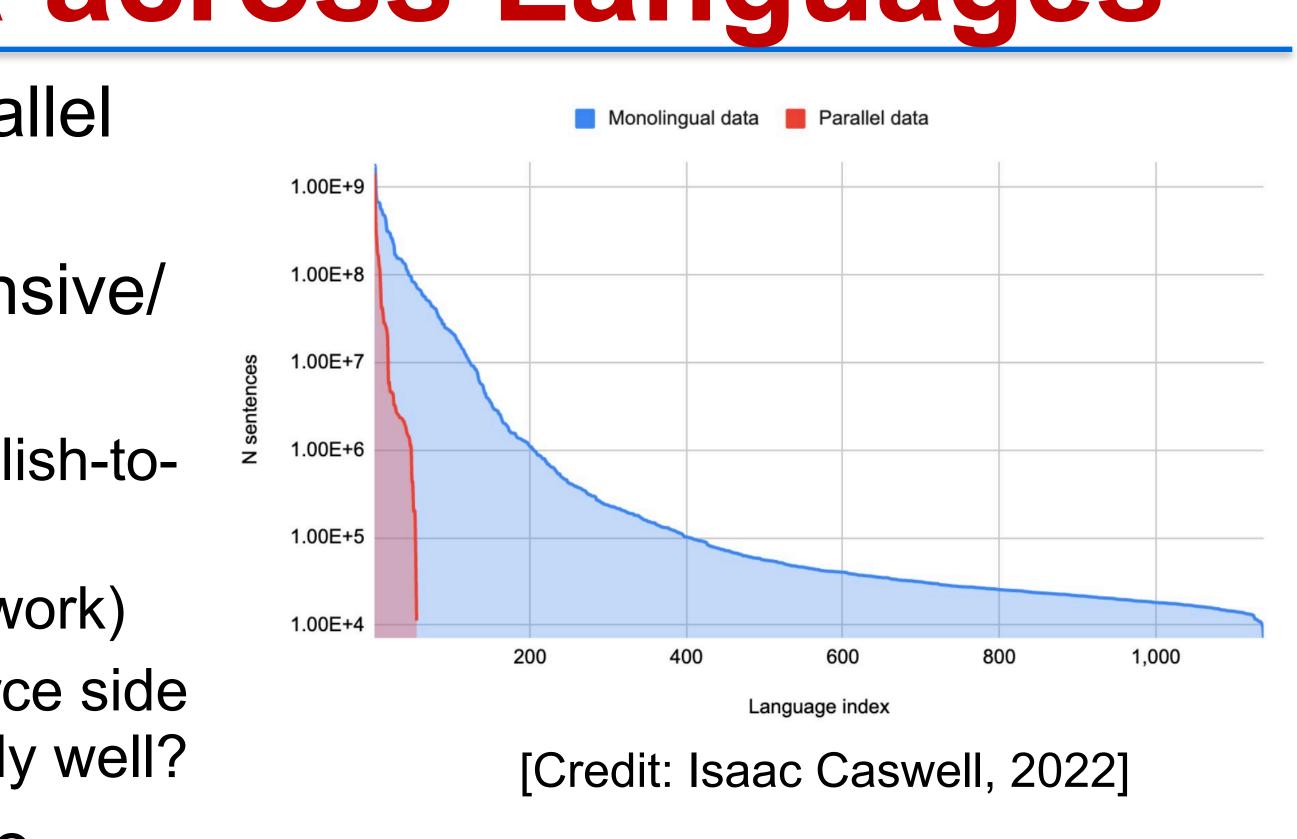






# Imbalanced Data across Languages

- NMT requires large amount of parallel bilingual data
- Parallel data, However, very expensive/ non-trivial to obtain
  - Low resource language pairs (e.g., English-to-Tamil)
  - Low resource domains (e.g., social network)
  - but additional monolingual data on source side and/or target side. can we do reasonably well?
- Rich resource setting: in addition to parallel data (>10 millions), much larger monolingual data, can we further improve?







- Many-to-one:
  - Many source language to a target language
  - Usually the target is English
- One-to-Many:
  - One source language to many target languages
  - Usually the source is English
- Many-to-many
  - Many source language to many target languages
  - Should include non-English pairs (often low-resource or zero-resource) setting)
  - very challenging if Non-english directions have little data!





# **MNMT at Testing Time**

• Supervised:

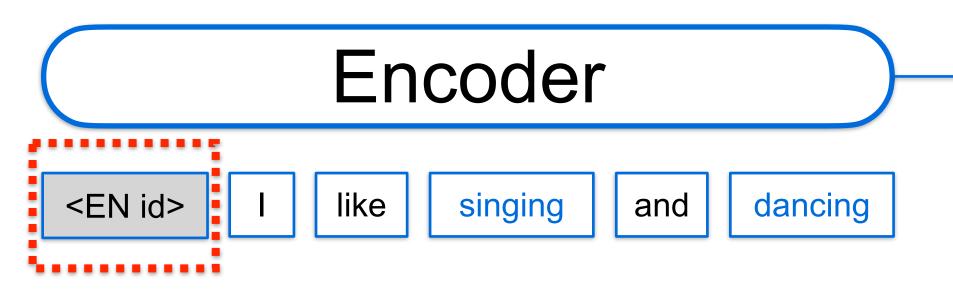
- Testing language pairs (usually English-centric) appeared during training

- Zero-shot (Exotic/unseen pair)
  - but the source-target pair never appeared in the training
  - Both the testing source language and target language appeared in the training, - Training on En-De, En-Fr, testing on De-Fr
- Unsupervised
  - Exotic source/target
  - Testing source/target language with no parallel sentence in the training. (but with Monolingual) Training on En-De, En-Fr, En-Zh, and Japanese monolingual text, then testing on Ja-De Exotic/Unseen full (most challenging)
    - Neither the source language nor the target language for testing occur in the training



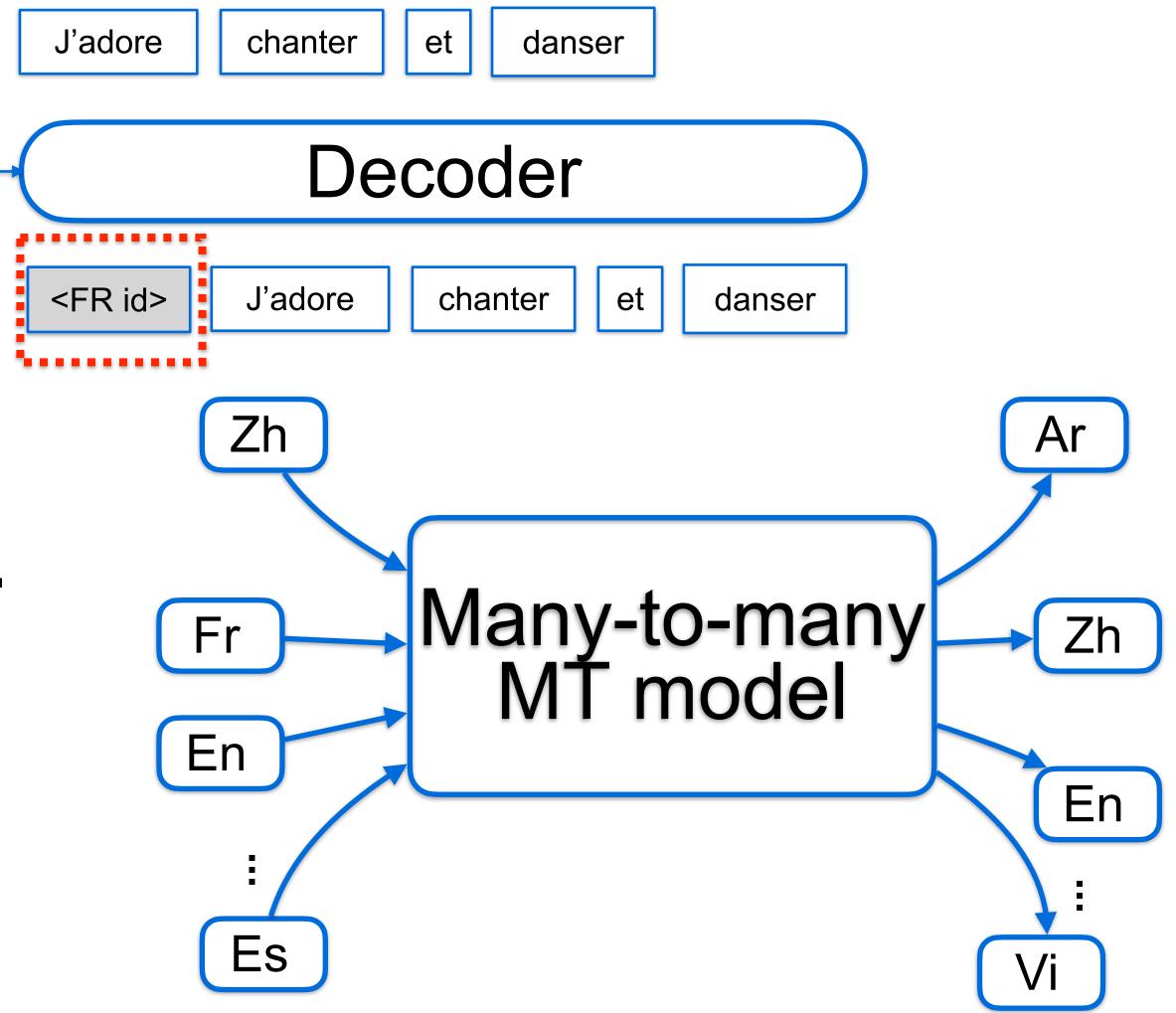


# Single Model for Multilingual MT



- One model can translate between many languages.
- Language Tag is used to indicate the source and target language.
- Vocabulary is built jointly

Johnson et al. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017 Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019







# **Google's MNMT: Success and Limitation**

- Training 12 language pairs together
- A single model (LSTM) seq2seq) with comparable performance as individual bilingual models
- But only one direction is better, many are noticeably worse than bilingual (a)

Johnson et al. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

Table 4: Large-scale experiments: BLEU scores for singl language pair and multilingual models.

|                     |        | U     |       |       |   |
|---------------------|--------|-------|-------|-------|---|
| Model               | Single | Multi | Multi | Multi |   |
| #nodes              | 1024   | 1024  | 1280  | 1536  |   |
| #params             | 3B     | 255M  | 367M  | 499M  |   |
| En→Ja               | 23.66  | 21.10 | 21.17 | 21.72 |   |
| En→Ko               | 19.75  | 18.41 | 18.36 | 18.30 |   |
| Ja→En               | 23.41  | 21.62 | 22.03 | 22.51 |   |
| Ko→En               | 25.42  | 22.87 | 23.46 | 24.00 |   |
| En→Es               | 34.50  | 34.25 | 34.40 | 34.77 |   |
| $En \rightarrow Pt$ | 38.40  | 37.35 | 37.42 | 37.80 |   |
| $Es \rightarrow En$ | 38.00  | 36.04 | 36.50 | 37.26 |   |
| Pt→En               | 44.40  | 42.53 | 42.82 | 43.64 |   |
| En→De               | 26.43  | 23.15 | 23.77 | 23.63 |   |
| $En \rightarrow Fr$ | 35.37  | 34.00 | 34.19 | 34.91 |   |
| De→En               | 31.77  | 31.17 | 31.65 | 32.24 |   |
| Fr→En               | 36.47  | 34.40 | 34.56 | 35.35 |   |
| ave diff            | -      | -1.72 | -1.43 | -0.95 |   |
| vs single           | _      | -5.6% | -4.7% | -3.1% |   |
|                     |        |       |       |       | _ |







# Multilingual Transformer: works but ...

- Data: 25 billion sentence pairs in 103 languages
- Model: mTransformer with 375 million params (larger than Transformer-big)

| $En \rightarrow Any$  | High 25 | Med. 52 | Low 25 |
|-----------------------|---------|---------|--------|
| Bilingual             | 29.34   | 17.50   | 11.72  |
| $All \rightarrow All$ | 28.03   | 16.91   | 12.75  |
| $En \rightarrow Any$  | 28.75   | 17.32   | 12.98  |
| <i>Any→En</i>         | High 25 | Med. 52 | Low 25 |
| Bilingual             | 37.61   | 31.41   | 21.63  |
| $All \rightarrow All$ | 33.85   | 30.25   | 26.96  |
| <i>Any→En</i>         | 36.61   | 33.66   | 30.56  |

Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019

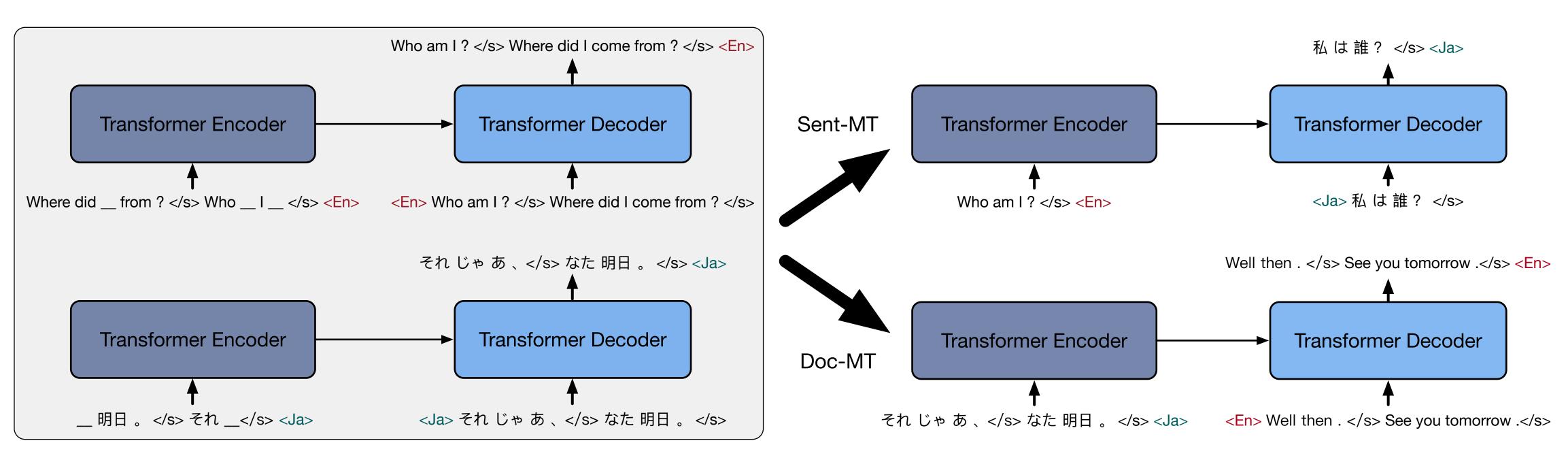
**Observation:** MNMT is good for low-resource, but bad for high/medresource







# **Pre-training Fine-tuning Paradigm for MNMT**



Multilingual Denoising Pre-Training (mBART)

- Multilingual denoising pre-training (25 languages) Sentence permutation
  - -Word-span masking
- Fine-tuning on MT with special language id

Multilingual Denoising Pre-training for Neural Machine Translation [Liu et al., TACL 2020]

#### **Fine-tuning** on Machine Translation



43

# **mBART: Multilingual Denoising Pre-training**

### Instead of a single model. Pre-train & fine-tuning

| Languages<br>Data Source | WM           | •Gu<br>[T19   | En-Kk<br>WMT19 |               | En-Vi<br>IWSLT15 |               | En-Tr<br>WMT17 |               | En-Ja<br>IWSLT17 |               | En-Ko<br>IWSLT17 |               |  |
|--------------------------|--------------|---------------|----------------|---------------|------------------|---------------|----------------|---------------|------------------|---------------|------------------|---------------|--|
| Size                     | 10           | )K            | 9]             | K             | 13               | 3K            | 20             | 7K            | 22               | 3K            | 23               | 0K            |  |
| Direction                | $\leftarrow$ | $\rightarrow$ | $\leftarrow$   | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ | $\leftarrow$   | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ |  |
| Random                   | 0.0          | 0.0           | 0.8            | 0.2           | 23.6             | 24.8          | 12.2           | 9.5           | 10.4             | 12.3          | 15.3             | 16.3          |  |
| mBART25                  | 0.3          | 0.1           | 7.4            | 2.5           | 36.1             | 35.4          | 22.5           | 17.8          | 19.1             | 19.4          | 24.6             | 22.6          |  |
| Languages                | En           | -NI           | En             | -Ar           | En               | -It           | En-            | My            | En               | -Ne           | En-Ro            |               |  |
| Data Source              | IWS          | LT17          | IWS            | LT17          | IWSLT17          |               | WAT19          |               | FLo              | Res           | <b>WMT16</b>     |               |  |
| Size                     | 23           | 7K            | 250K           |               | 250K             |               | 259K           |               | 564K             |               | 608K             |               |  |
| Direction                | $\leftarrow$ | $\rightarrow$ | $\leftarrow$   | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ | $\leftarrow$   | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ |  |
| Random                   | 34.6         | 29.3          | 27.5           | 16.9          | 31.7             | 28.0          | 23.3           | 34.9          | 7.6              | 4.3           | 34.0             | 34.3          |  |
| mBART25                  | 43.3         | 34.8          | 37.6           | 21.6          | 39.8             | 34.0          | 28.3           | 36.9          | 14.5             | 7.4           | 37.8             | 37.7          |  |
| Languages                | En           | -Si           | En             | -Hi           | En               | -Et           | En             | -Lt           | En               | -Fi           | En-Lv            |               |  |
| Data Source              | FLo          | Res           | IT             | ТВ            | WM               | <b>[T18</b> ] | WM             | <b>[T19</b>   | WM               | <b>[T17</b> ] | WM               | <b>[T17</b>   |  |
| Size                     | 64           | 7K            | 1.5            | 6M            | 1.9              | 4M            | 2.1            | 1 <b>M</b>    | 2.6              | 6M            | 4.50M            |               |  |
| Direction                | $\leftarrow$ | $\rightarrow$ | $\leftarrow$   | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ | $\leftarrow$   | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ | $\leftarrow$     | $\rightarrow$ |  |
| Random                   | 7.2          | 1.2           | 10.9           | 14.2          | 22.6             | 17.9          | 18.1           | 12.1          | 21.8             | 20.2          | 15.6             | 12.9          |  |
| mBART25                  | 13.7         | 3.3           | 23.5           | 20.8          | 27.8             | 21.4          | 22.4           | 15.3          | 28.5             | 22.4          | 19.3             | 15.9          |  |

Low resource: more than 6 BLEU. But fails in extremely low-resource setting

#### Medium resource: more than 3 **BLEU** improvement







44

# **mBART on Rich-resource translation**

| Languages<br>Size | <b>Cs</b><br>11M    |                     |                     |                     |                  |                  |
|-------------------|---------------------|---------------------|---------------------|---------------------|------------------|------------------|
| Random<br>mBART25 | 16.5<br><b>18.0</b> | 33.2<br><b>34.0</b> | <b>35.0</b><br>33.3 | <b>30.9</b><br>30.5 | <b>31.5</b> 31.3 | <b>41.4</b> 41.0 |

- available.
- supposed to wash out the pre-trained weights completely.

Pre-training slightly hurts performance when >25M parallel sentence are

• When a significant amount of bi-text data is given, supervised training are





# Summary of Challenges for MNMT

- Unified MNMT model has *inferior* performance than bilingual models
- Limited performance on zero-shot directions
- Possible causes:
  - highly imbalanced parallel data
  - parameter interference
  - insufficient use of monolingual data



build a single unified Multilingual MT models with superior performance on all language directions

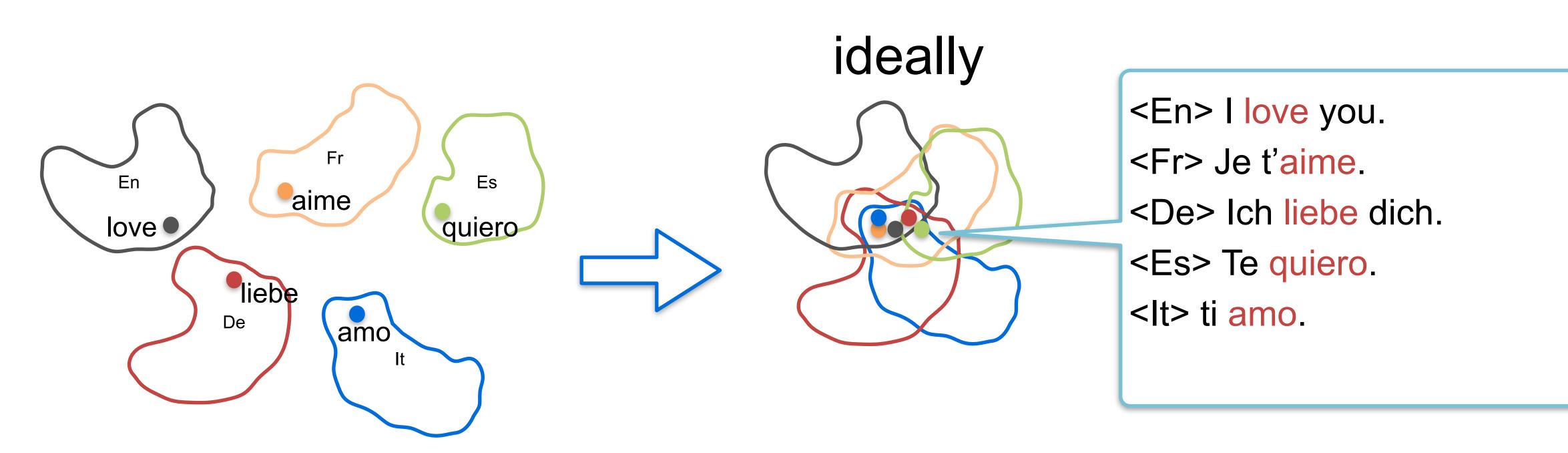


# **Aligning Semantic Representations across Languages**

## • Key idea:

1.Words in difference languages with the same meaning should have the same embedding

-but the training objective does not necessarily encourage that!



Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020] Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]



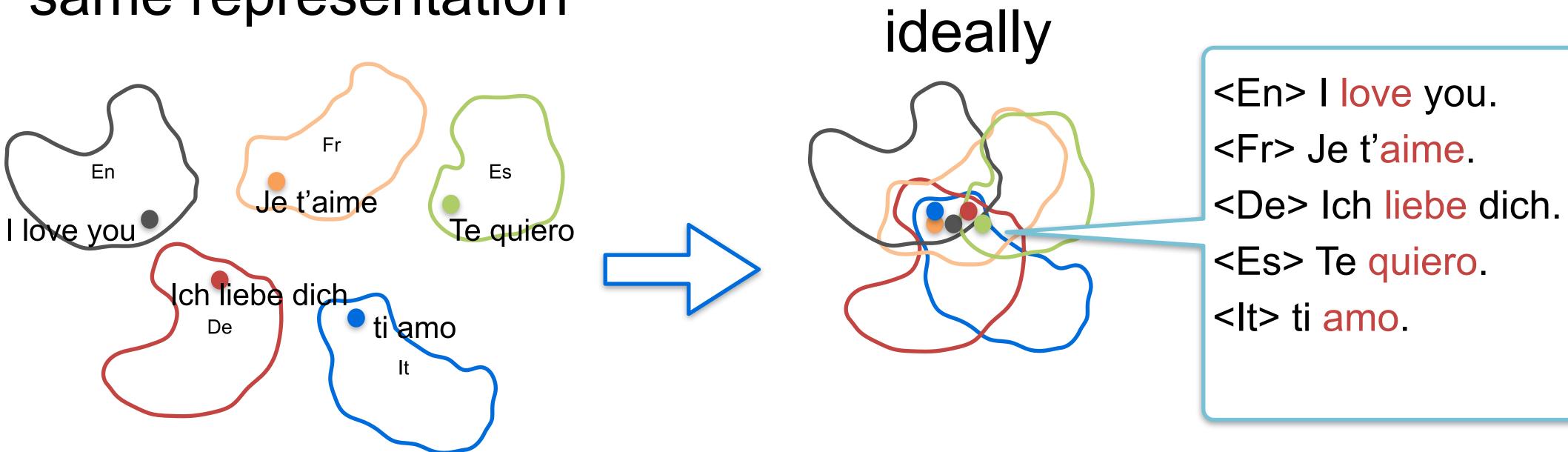




# **Aligning Semantic Representations across Languages**

## • Key idea:

- have the same embedding
- same representation



Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020] Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]

1.Words in difference languages with the same meaning should

2. Parallel sentences in difference languages should have the

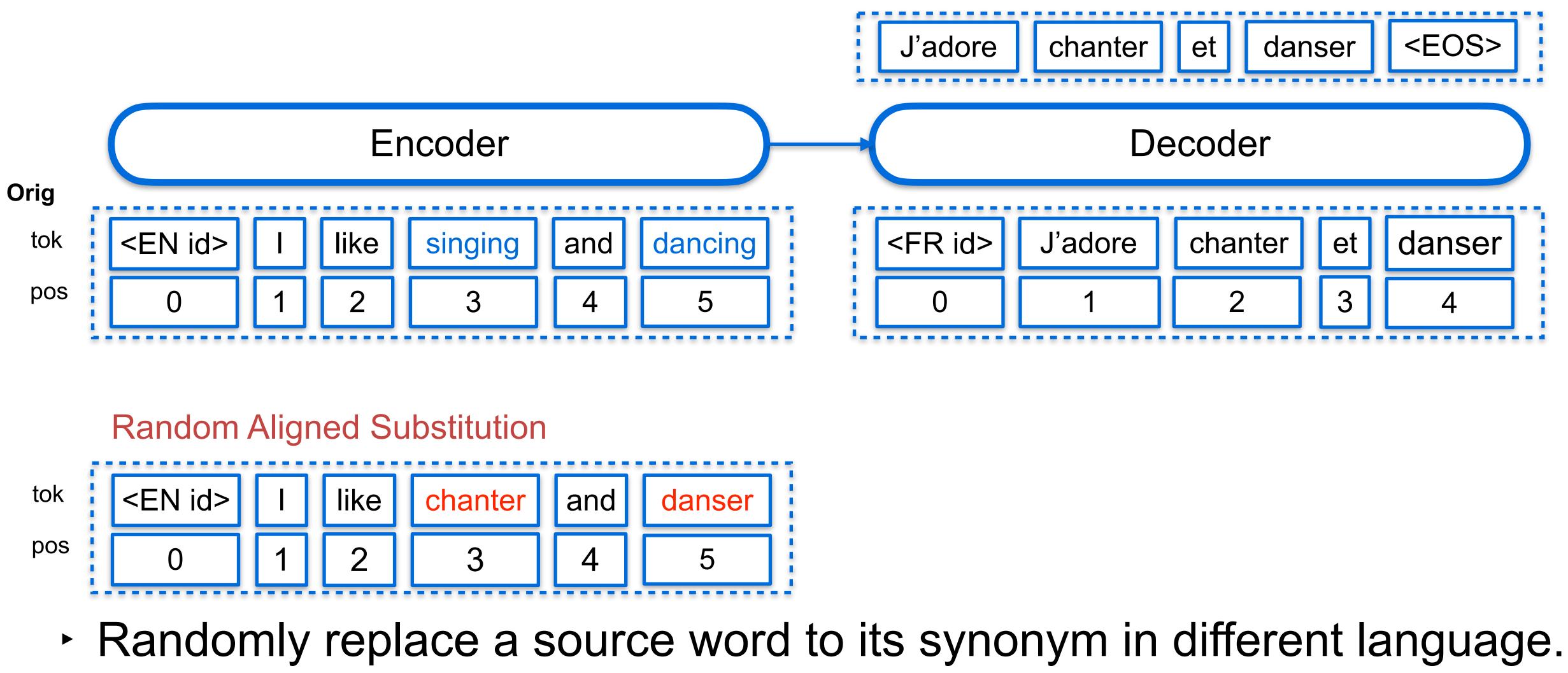








#### **Pre-training in mRASP**



Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

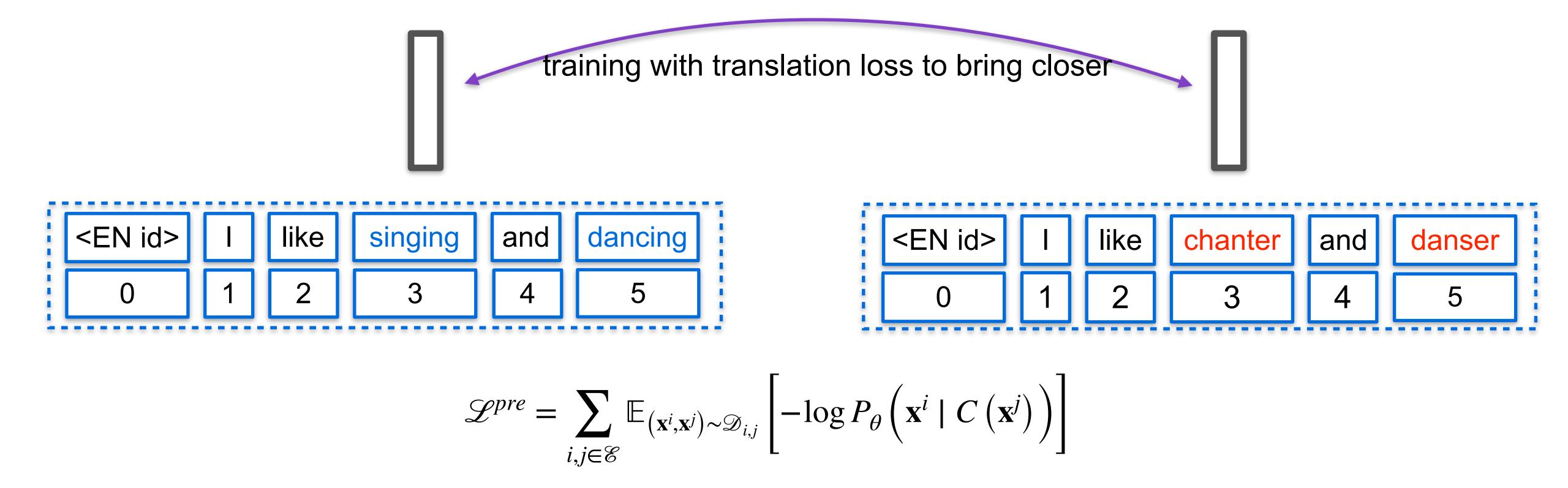
# Idea 1: Training with RAS augmented samples





# mRASP: Bringing synonym representations closer

RAS: for each source sentence, randomly pick tokens, substitute with synonyms in other languages.



Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

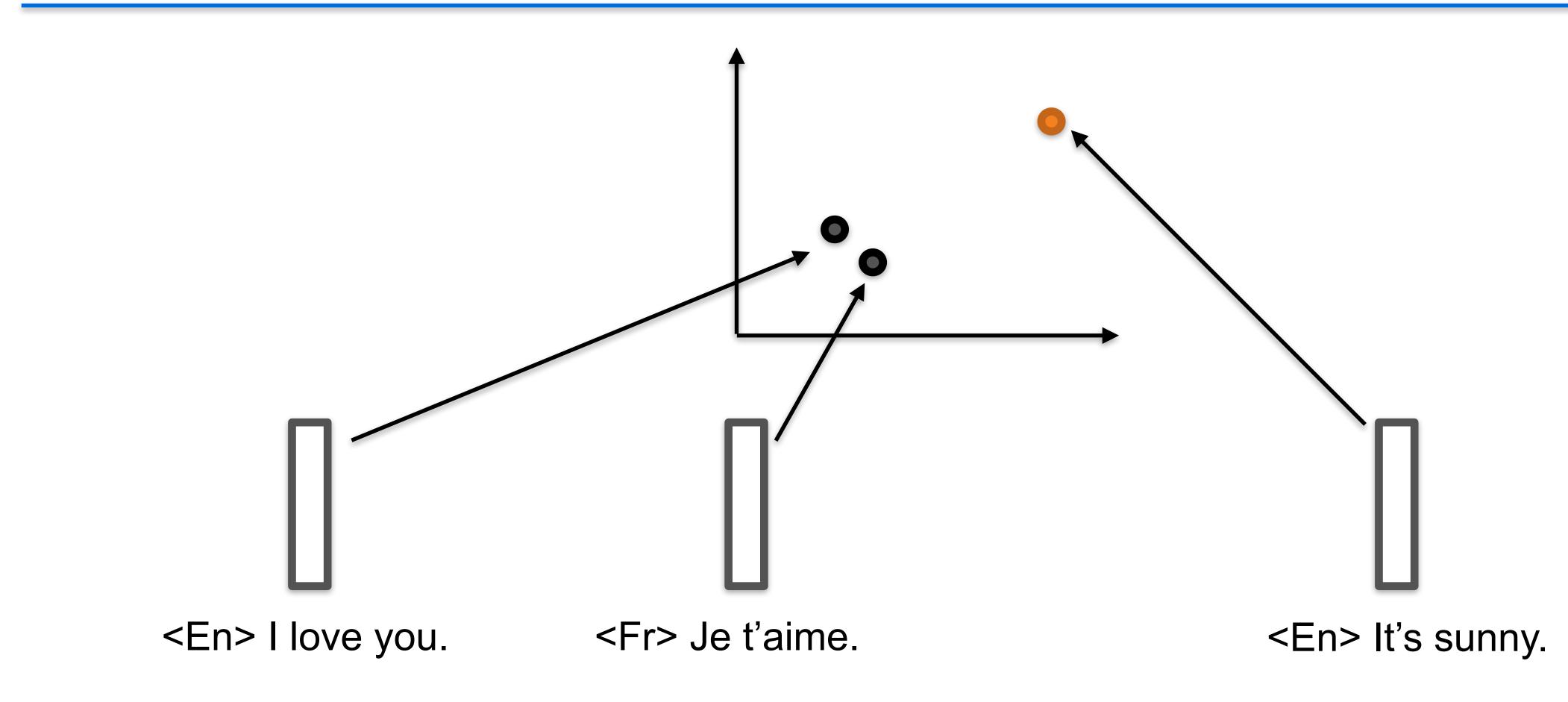
- pair with original target and train in normal translation objective (cross-entropy)







## Idea 2: Bring parallel sentence representations closer

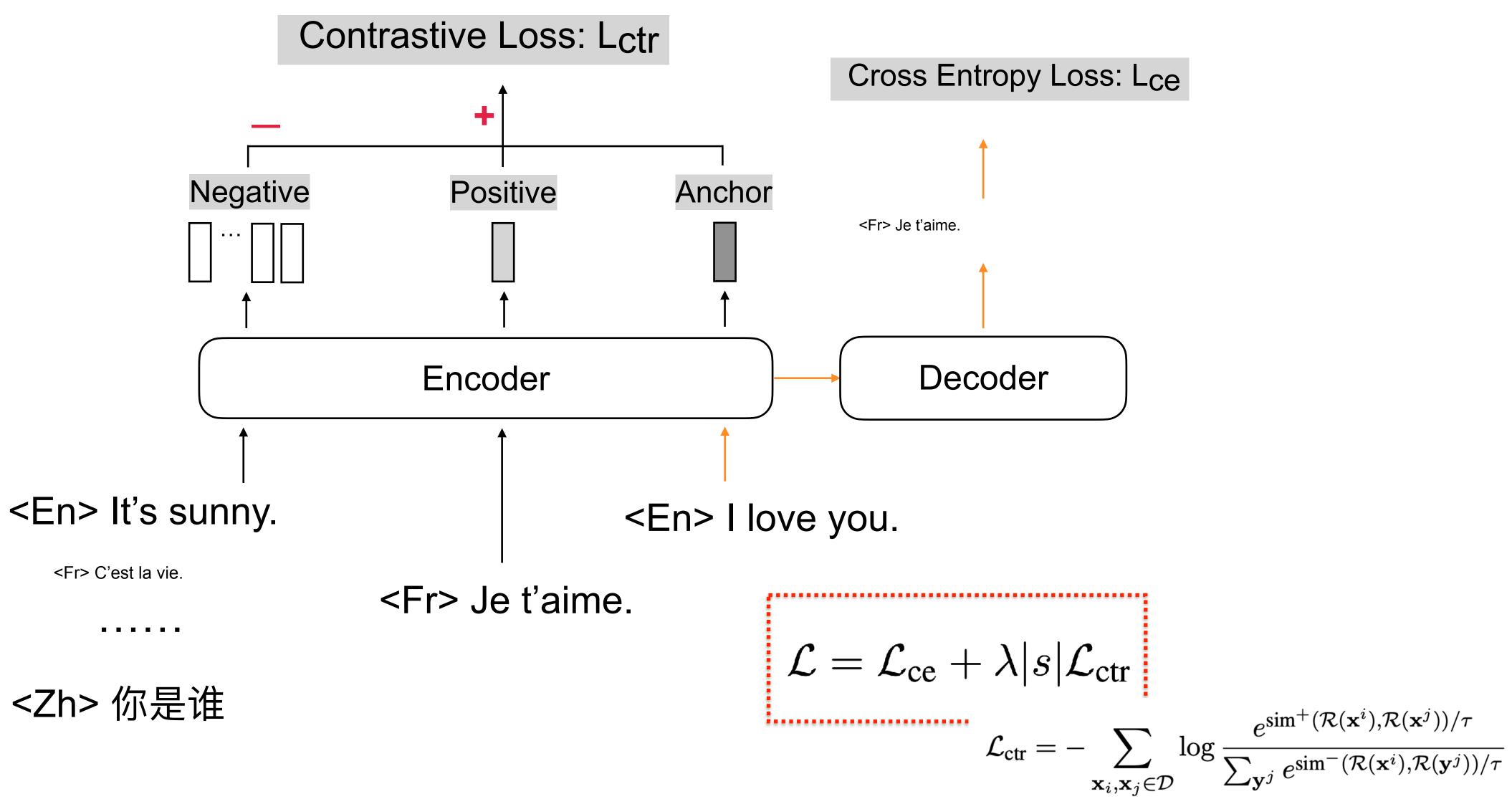


Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]





#### mRASP2: Contrastive Learning to bring sentence representations closer



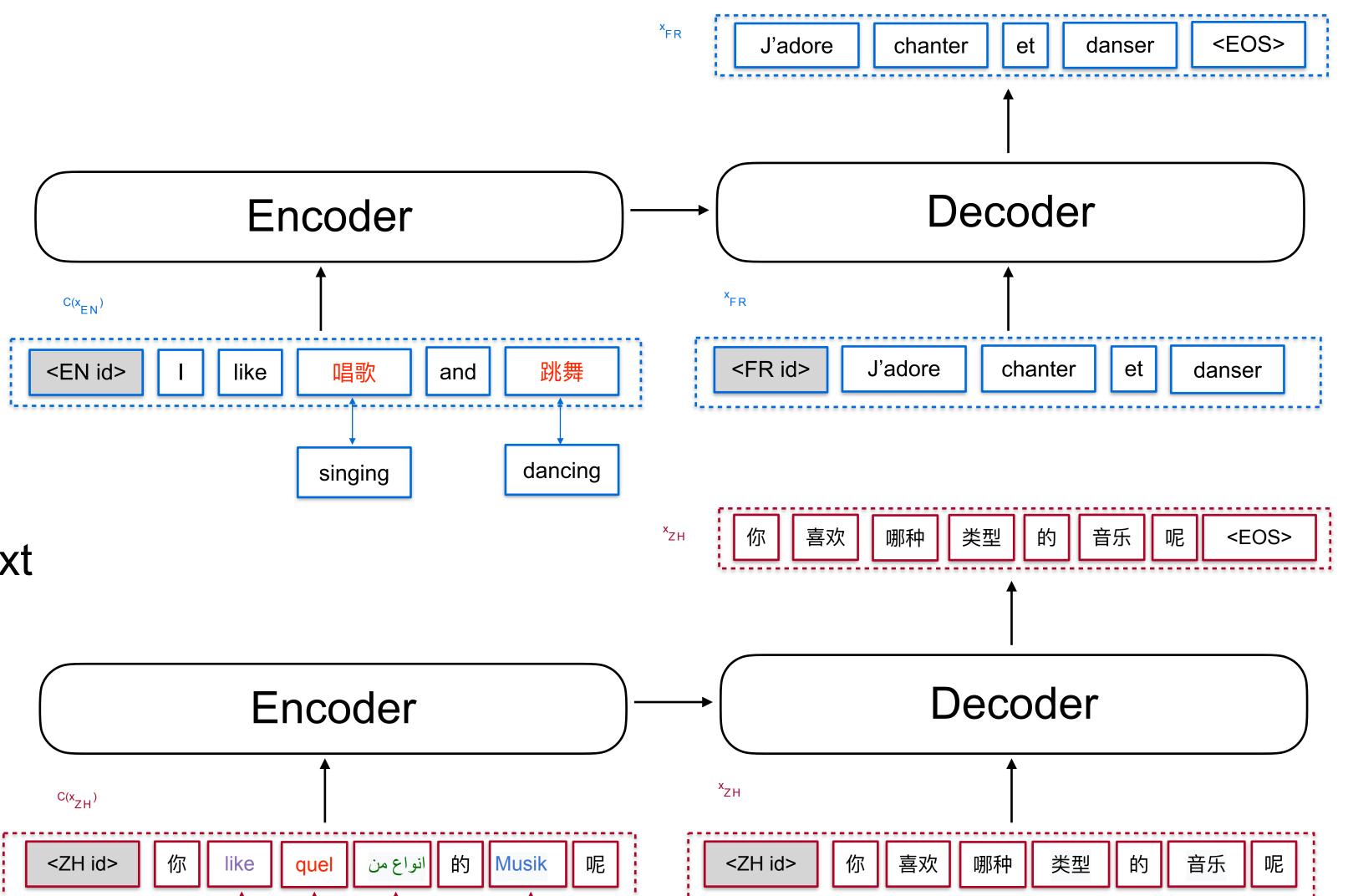
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]



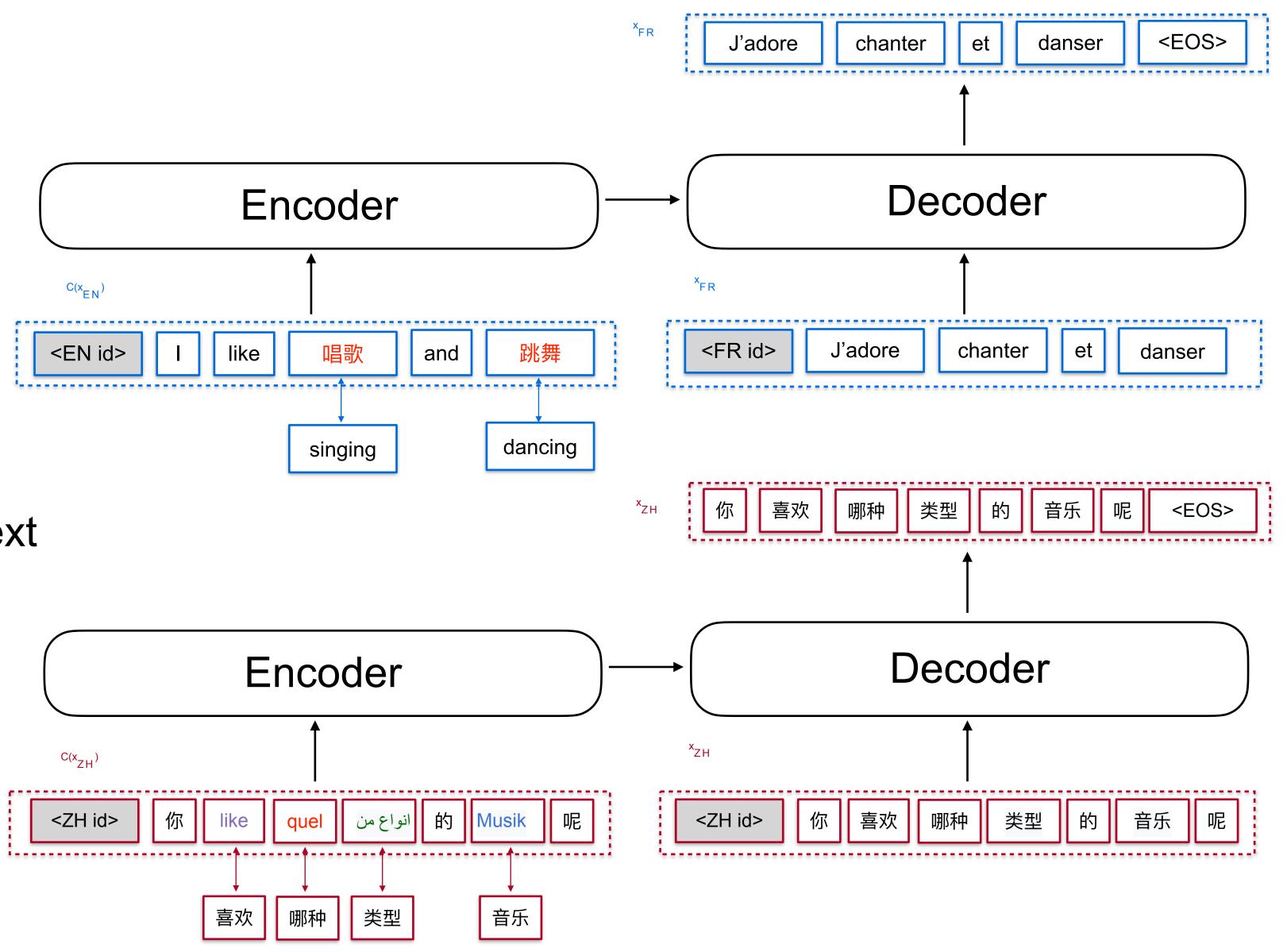


## Idea 3: Integrating monolingual data in a unified training framework

• Parallel text



Monolingual text



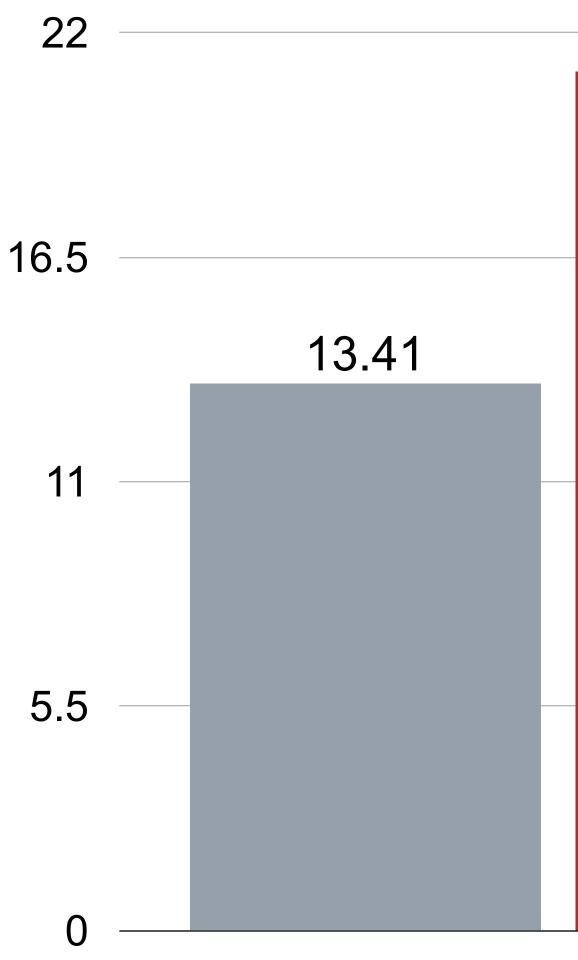
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]



54

# mRASP2: a single MNMT model (no fine-tuning)

#### **Overall Results in all** scenarios: 56 directions



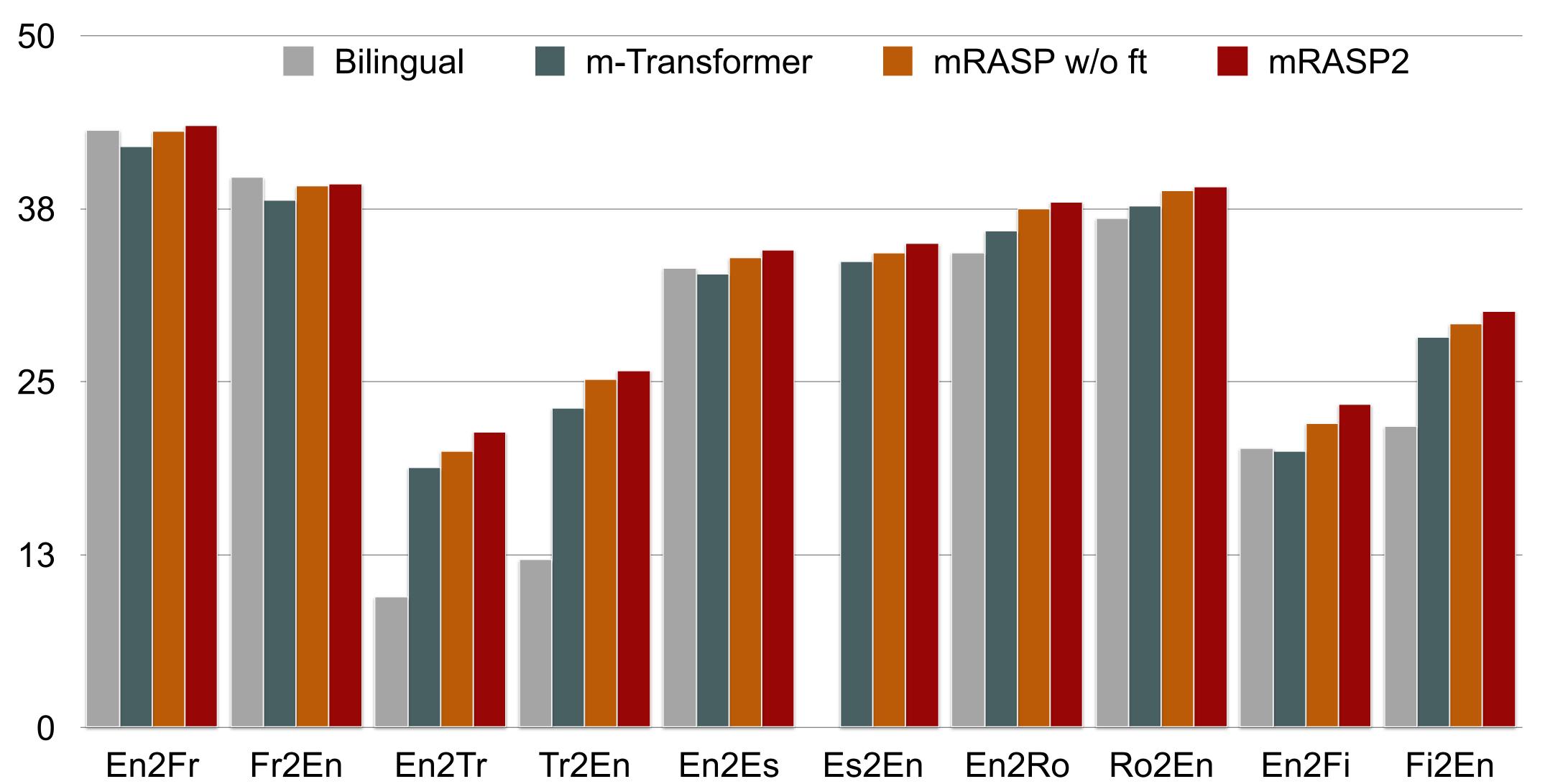
|         | 21.03    | m-Transformer | mRASP2 |
|---------|----------|---------------|--------|
|         |          |               |        |
|         |          |               |        |
|         |          |               |        |
| 13.41   |          |               |        |
|         |          |               |        |
|         |          |               |        |
|         |          |               |        |
|         |          |               |        |
|         |          |               |        |
|         |          |               |        |
|         |          |               |        |
| Average | ed (ALL) |               |        |





### mRASP2: Comparable or Better Performance on Supervised Directions



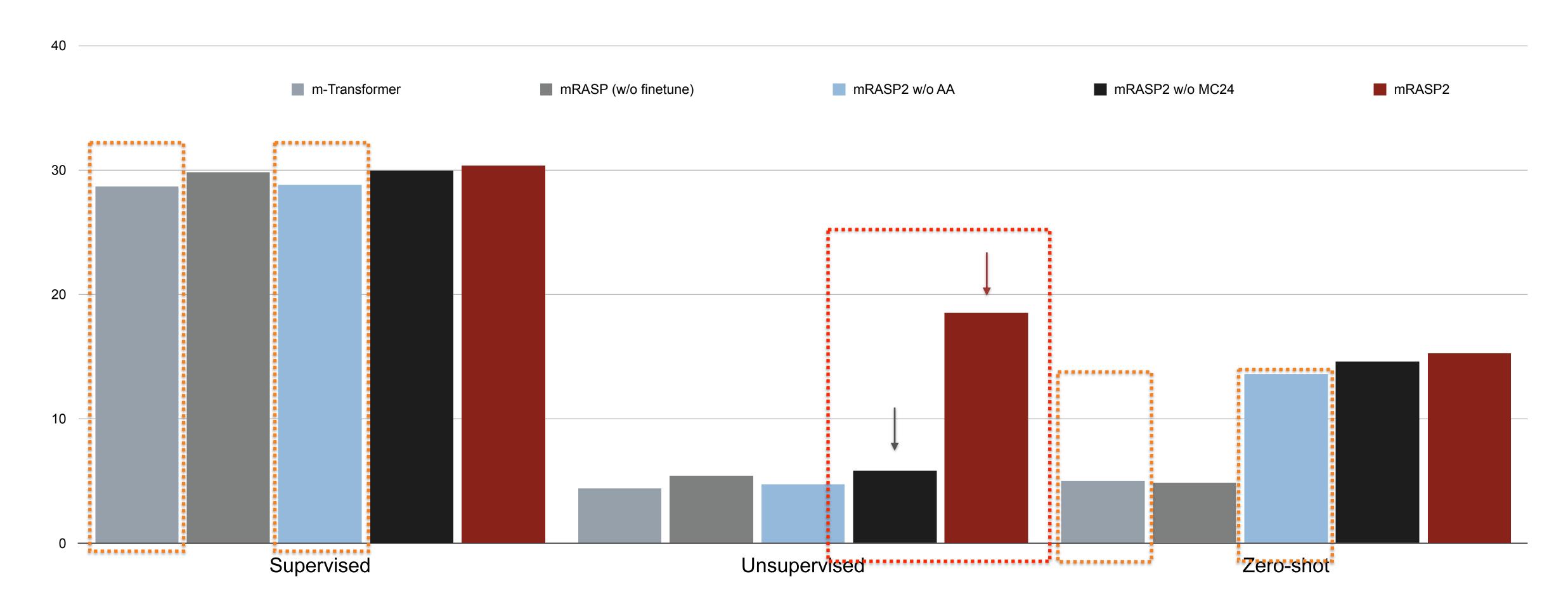


#### **Tokenized BLEU on supervised directions**





#### **Contrastive Learning effectively improves zero-shot translation without hurting** supervised translation performance

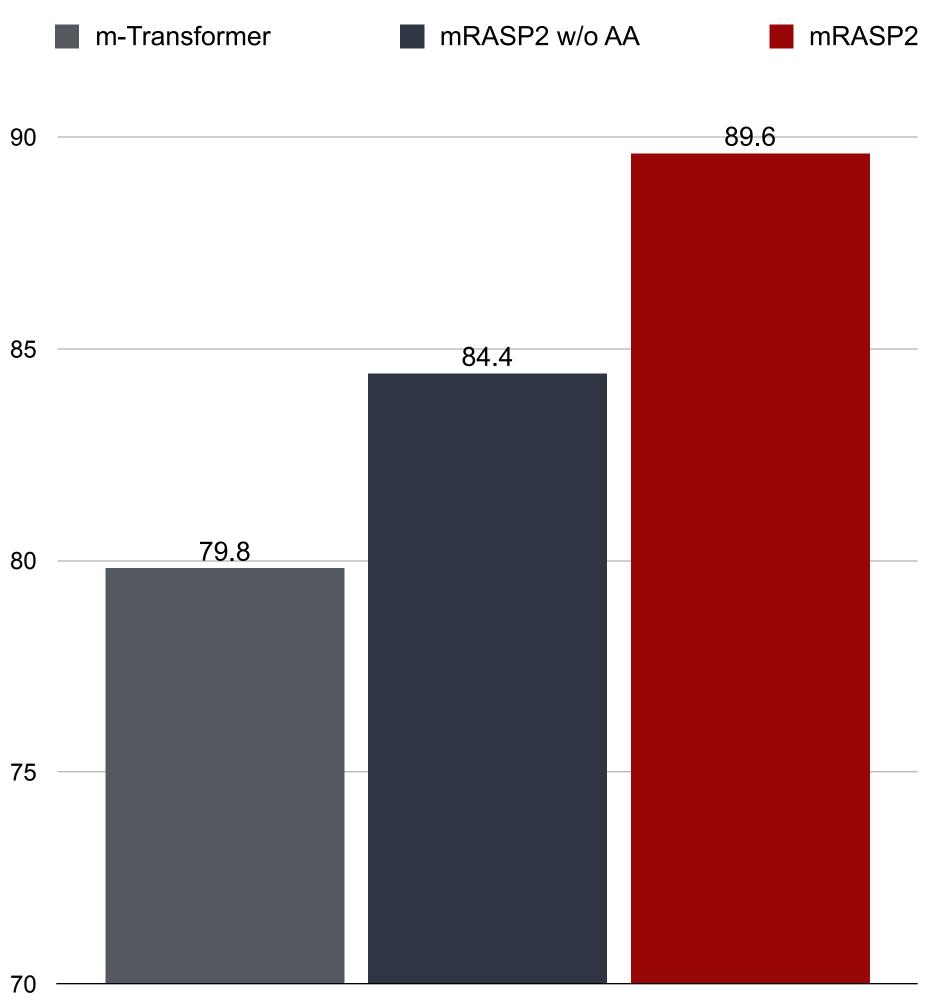


Monolingual Corpus mainly contributes to unsupervised translation





# **Better Semantic Alignment: Sentence Retrieval**



#### Averaged Retrieval acc

15-way parallel test set(Ted-M): 2284 samples

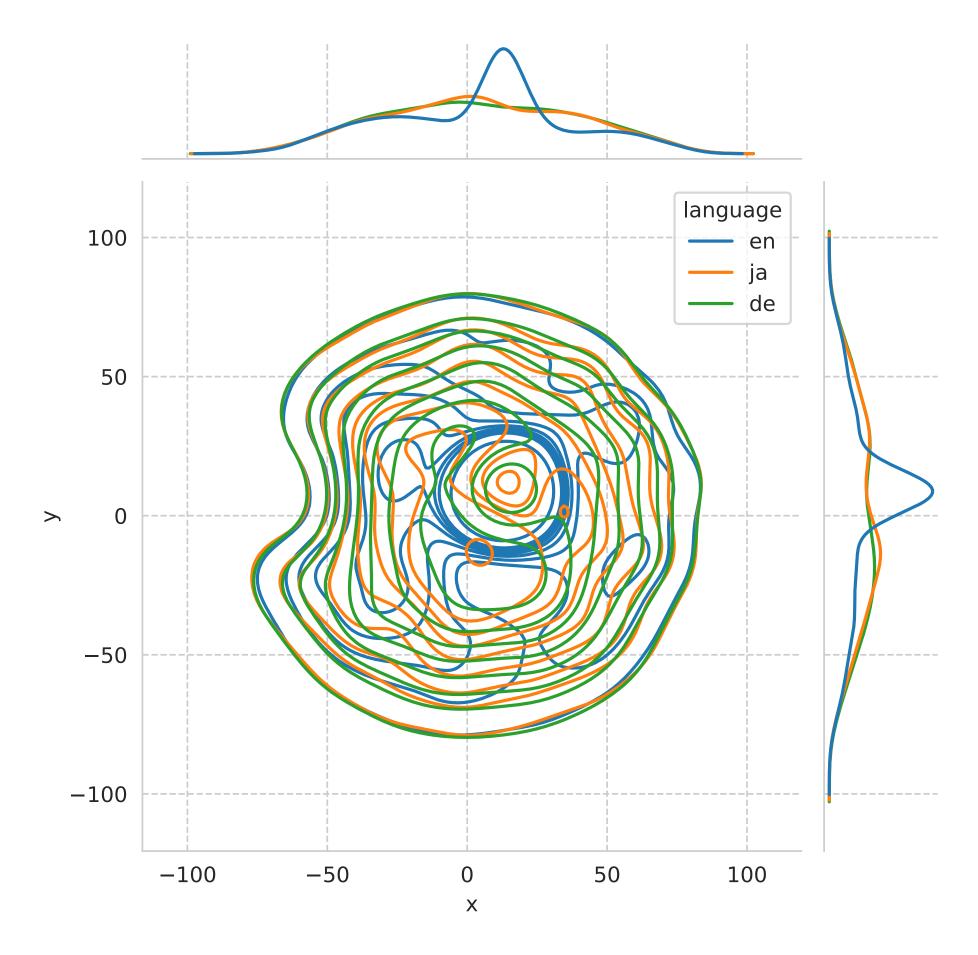
**Contrastive Learning and Randomly** Aligned Substitution both contribute to the improvement on sentence retrieval



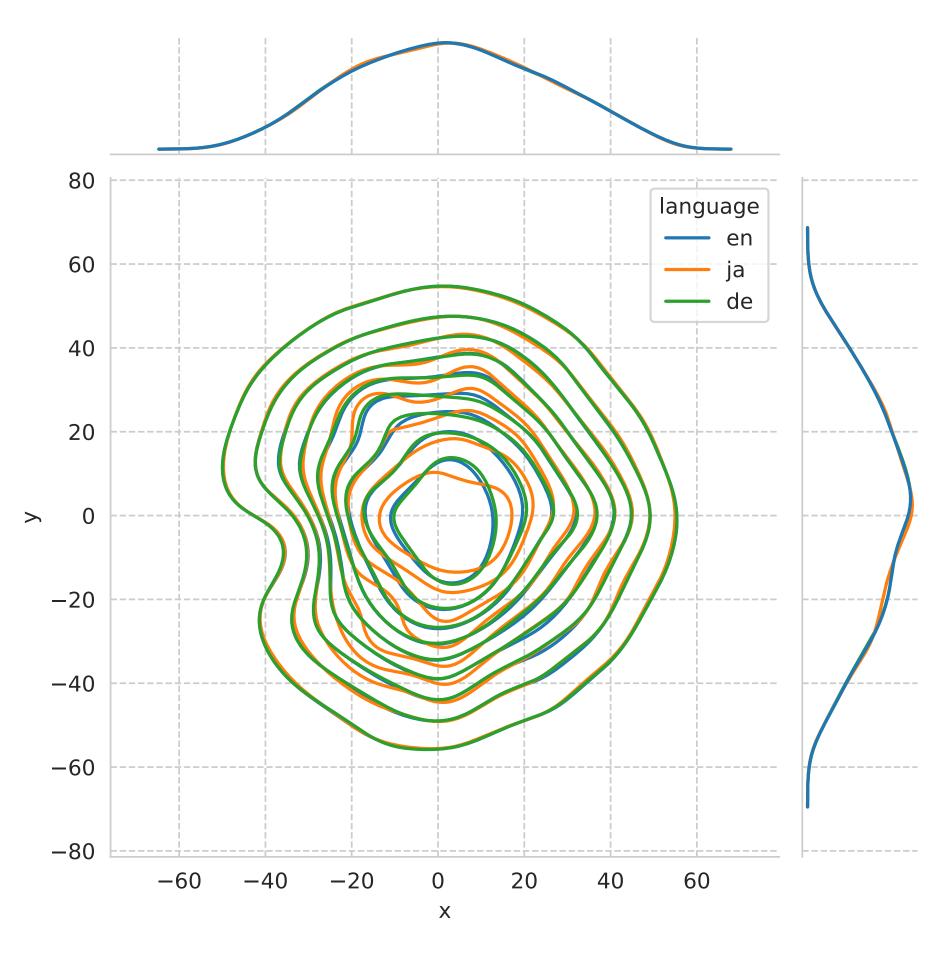


# mRASP2 produces Better Semantic Alignment

#### Visualization of Sentence Representation m-Transformer



Better Alignment of En, Ja, De Representations !!



mRASP2

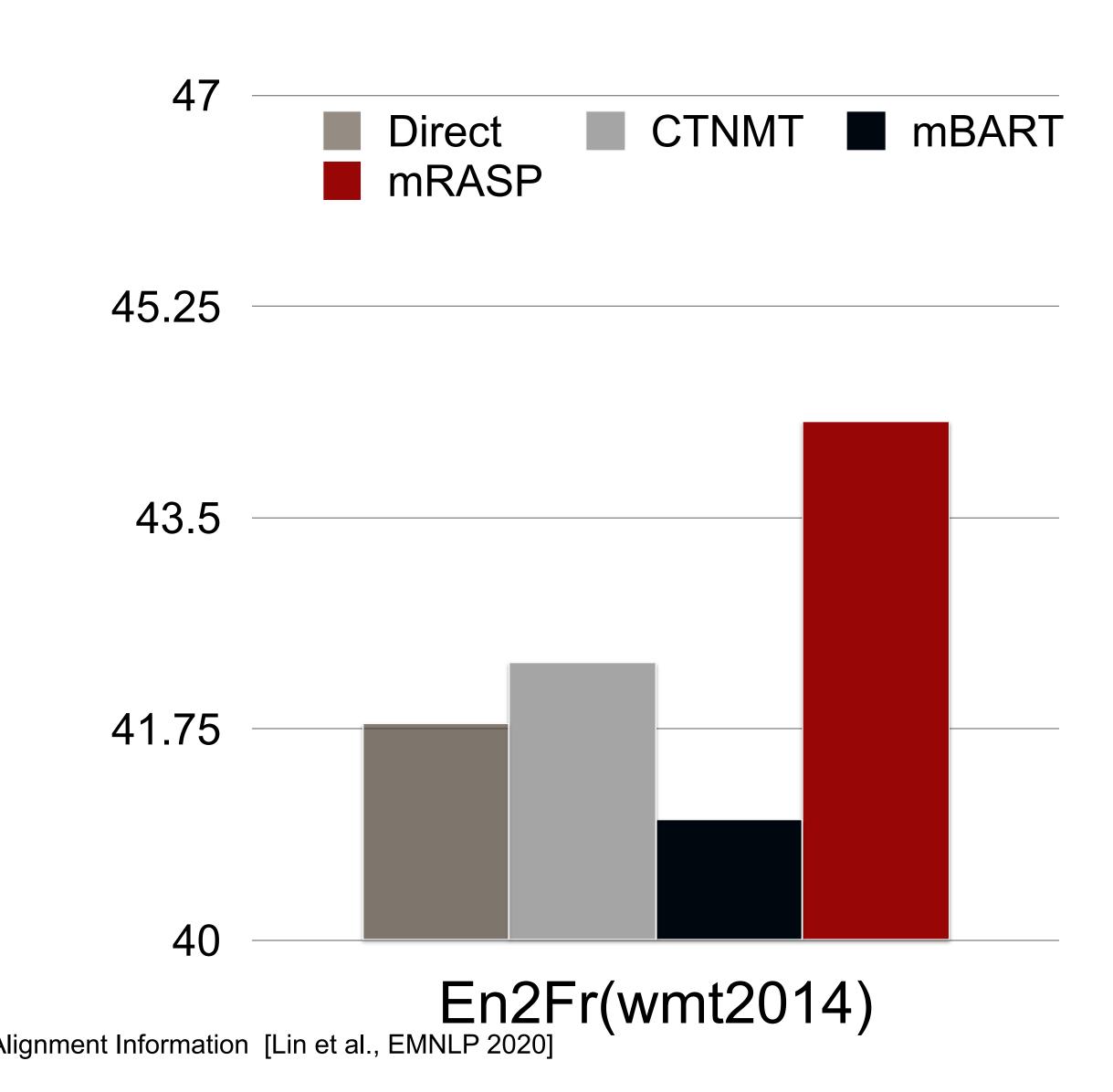




# mRASP Fine-tunes better: Rich resource works

### • En->Fr +1.1BLEU. 31 XLM Direct MASS mBERT mRASP 30.25 29.5 28.75 28 En2De(wmt2016)

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

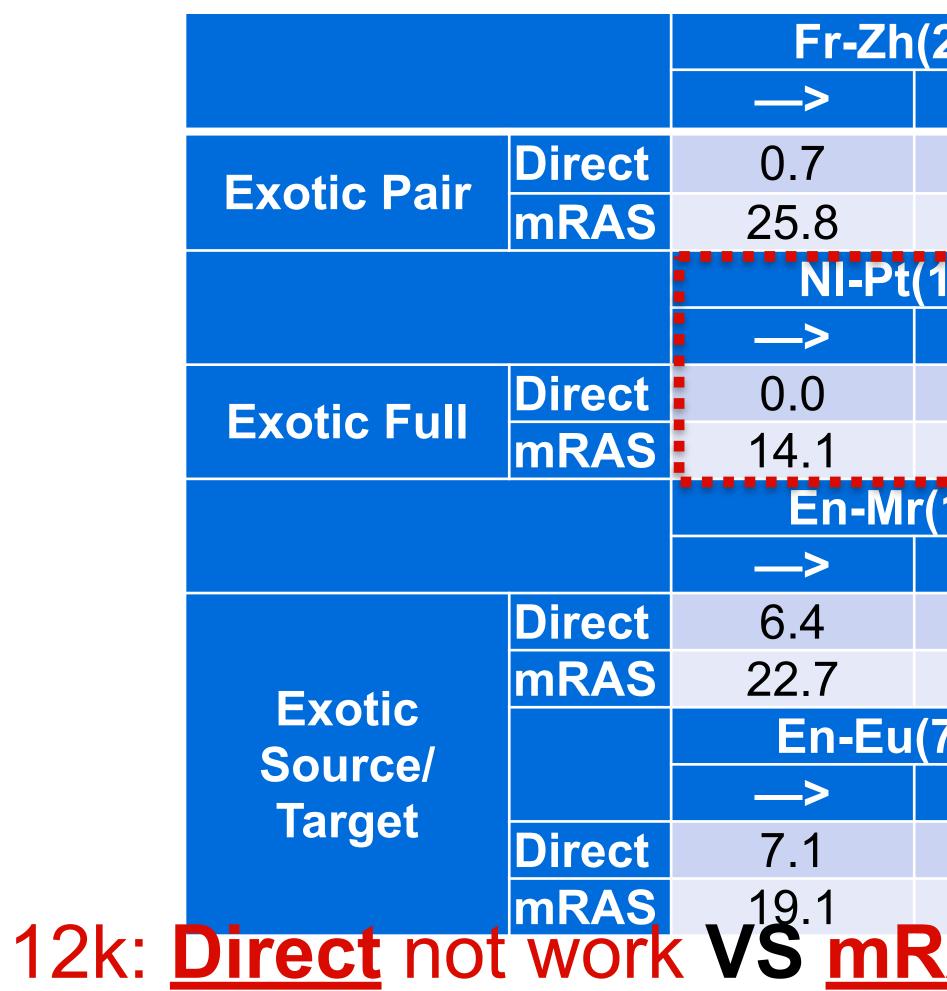




60

# mRASP: Unseen languages

### • mRASP generalizes on all exotic scenarios.



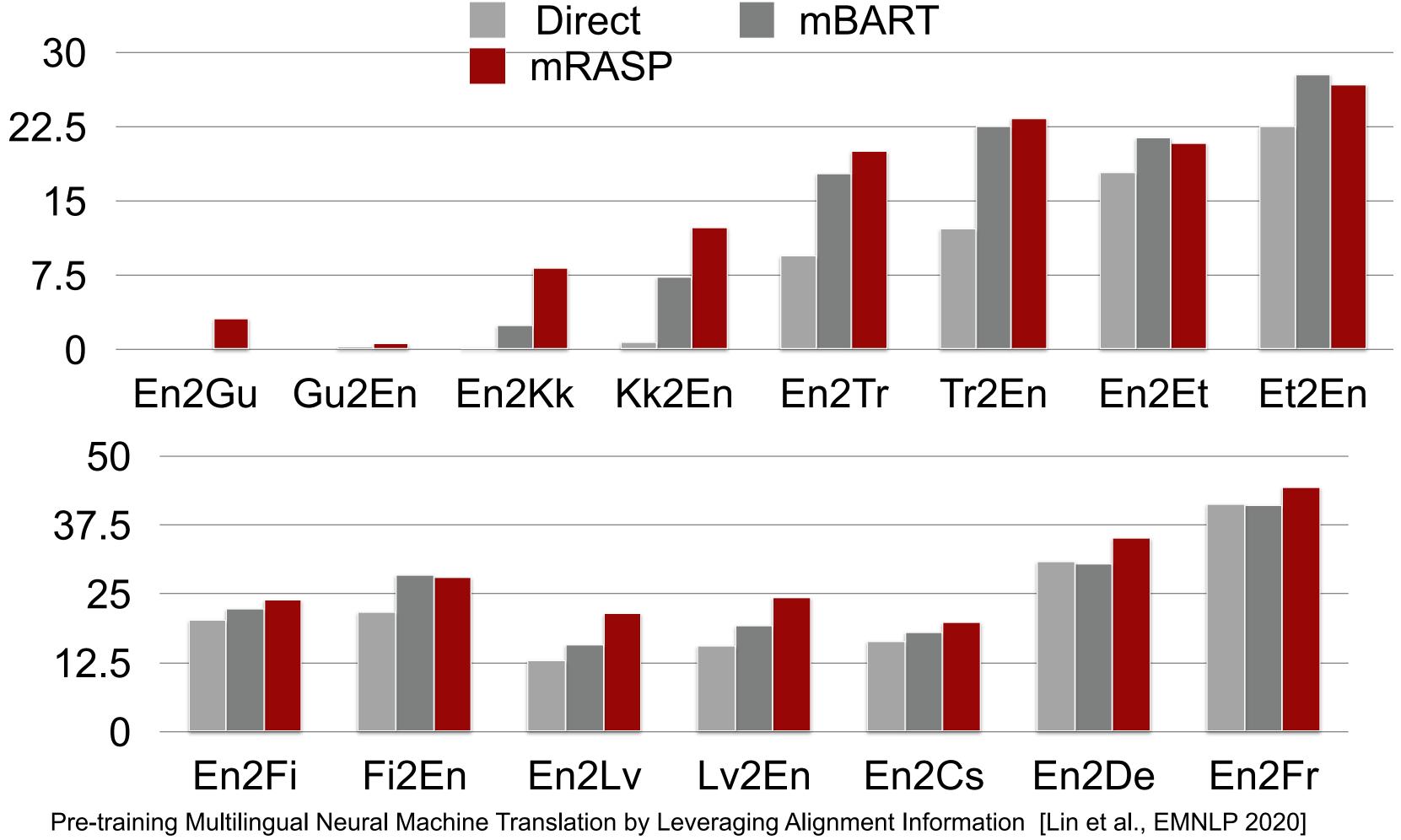
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

| (20K)  | De-F            | r(9M)   |      |
|--------|-----------------|---------|------|
| <      | >               | <       |      |
| 3      | 23.5            | 21.2    |      |
| 26.7   | 29.9            | 23.4    |      |
| (12K)  | Da-El           | (1.2M)  |      |
| <      | >               | <       |      |
| 0.0    | 14.1            | 16.9    |      |
| 13.2   | 17.6            | 19.9    |      |
| r(11K) | En-Gl           | (1.2M)  |      |
| <      | >               | <       |      |
| 6.8    | 8.9             | 12.8    |      |
| 22.9   | 32.1            | 38.1    |      |
| (726k) | En-S            | I(2M)   |      |
| <—     | >               | <       |      |
| 10.9   | 24.2            | 28.2    |      |
| 28.4   | 27.6<br>chieves | 29.5    |      |
| KASP a | cnieves         | 5 IU+ B | LEU! |



# **mRASP: Compare with other methods**

### mRASP outperforms mBART for all but two language pairs.



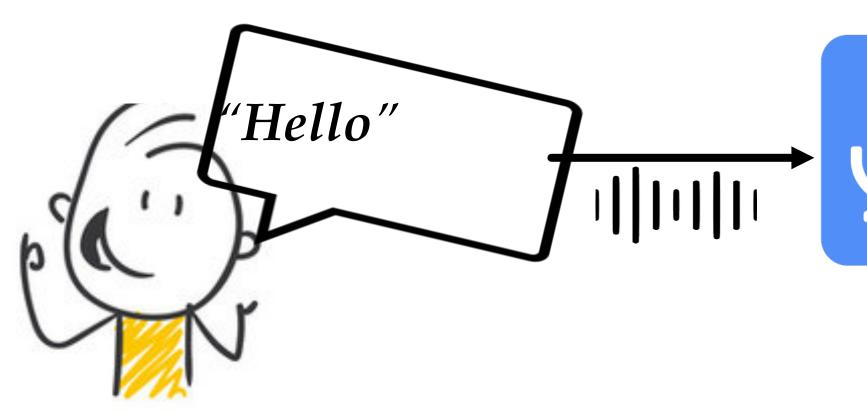






# **Speech Translation**

# **Speech-to-Text Translation(ST)** source language speech(audio) -> target lang text



### **Application Type**

- (Non-streaming) ST e.g. video translation
- Streaming ST e.g. realtime conference translation

### System

 Cascaded ST End-to-end ST

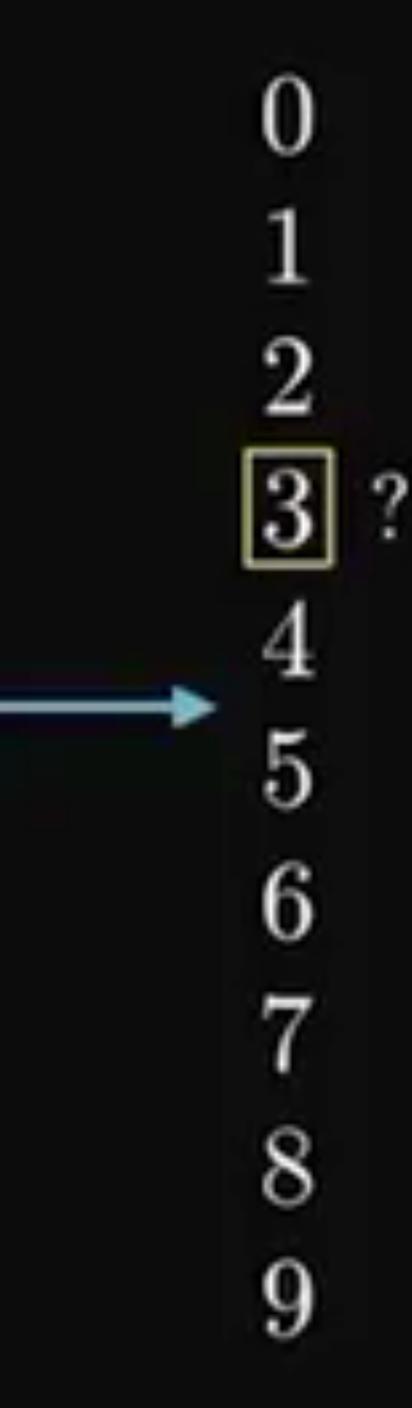
你好





\*\*\*\*\* -------------........ 40.64 ------44 13 14 1010101010101010 40 CD CD CD CD LD CD CD CD 40 AD 40 CT 40 ------53 60 64 68 65 63 4.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 E.D 1010 00 00 00 00 00 00 40 60 65 22 22 12 24 24 14 48.63 -----10 88 38 58 48 58 52 45 40 40 40 35 55 65 65 55 65 03 10 00 10 00 00 00 00 40 10 10 10 10 ------------40 15 15 10 15 15 18 14 40 40 40 40 40 40 40 40 ------44 14 44 1010 -------40 10 10 10 44 64 53 65 CO CO NO NO NO NO NO NO 60 60 60 101.0 1.0 1.0 [CJ 13 14 14 05 15 18 18 18 19 40 L0 40 L0 40 40 40 L0 L0 249 20 24 40 60 05 60 60 60 sol ------------40 48 48 48 48 48 18 18 18 18 48 48 48 48 48 101008 60 00 00 00 00 08 10 10 881010 22 23 28 28 28 28 48 48 48 23 40 40 40 40 ....... 40 10 45 48 58 48 49 18 19 -----8.0 6.0 6.0 6.0 6.0 6.0 5.0 6.0 4.0 1.0 8.0 8.0 6.0 6.0 6.0 6.0 6.0 

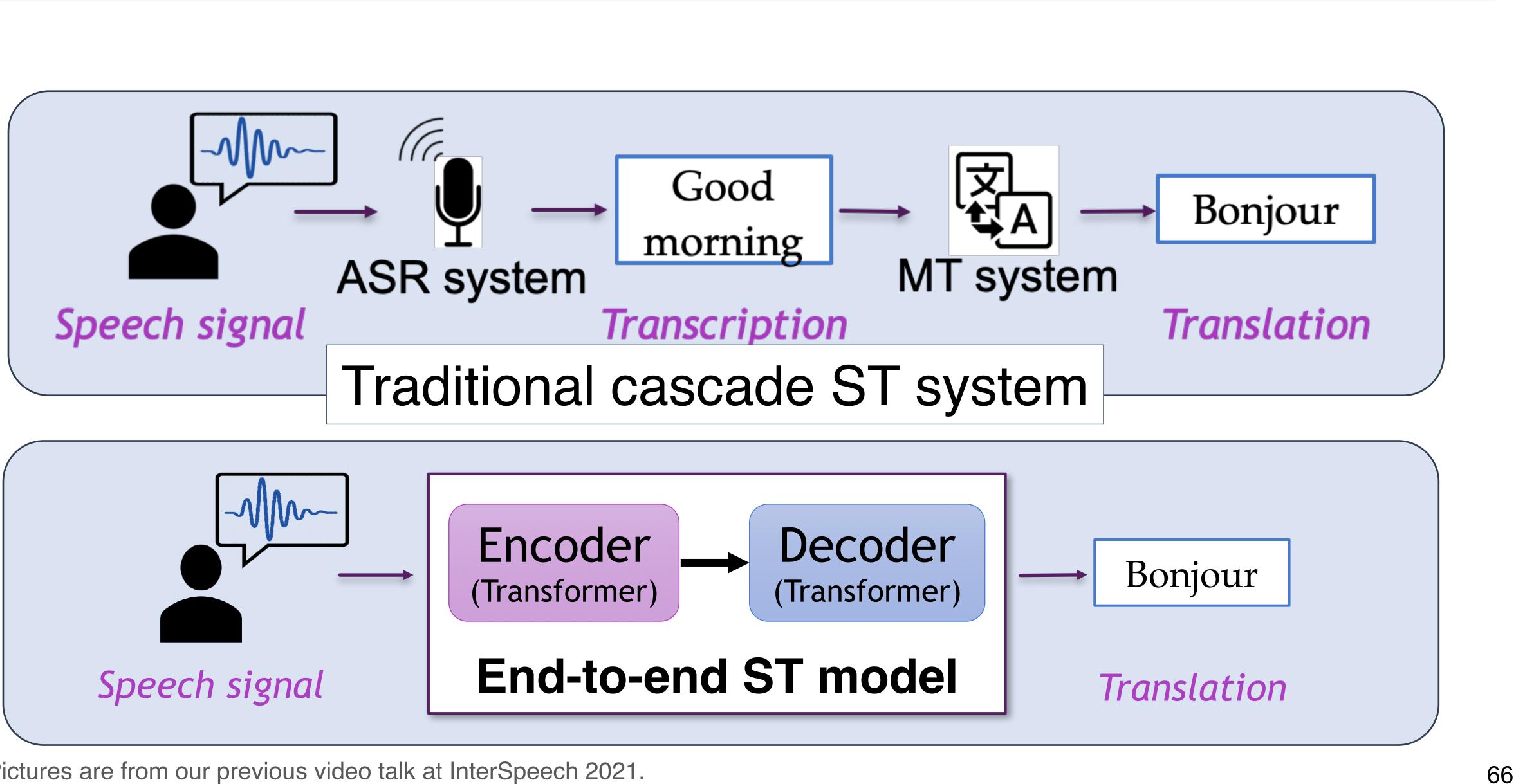








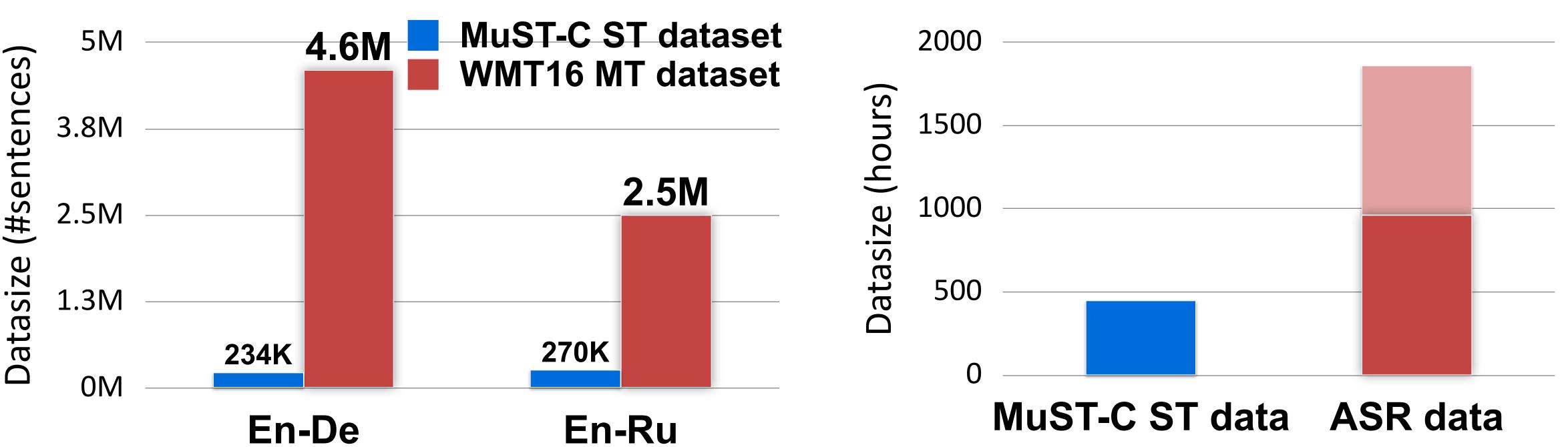
# End-to-end model: makes ST easier



\* Pictures are from our previous video talk at InterSpeech 2021.

# Challenge

- corpus
- Modality Disparity between speech and text **Dataset size (Text)** ST vs MT



## Data scarcity - lack of large parallel audio-translation

# **Dataset size** ST vs ASR

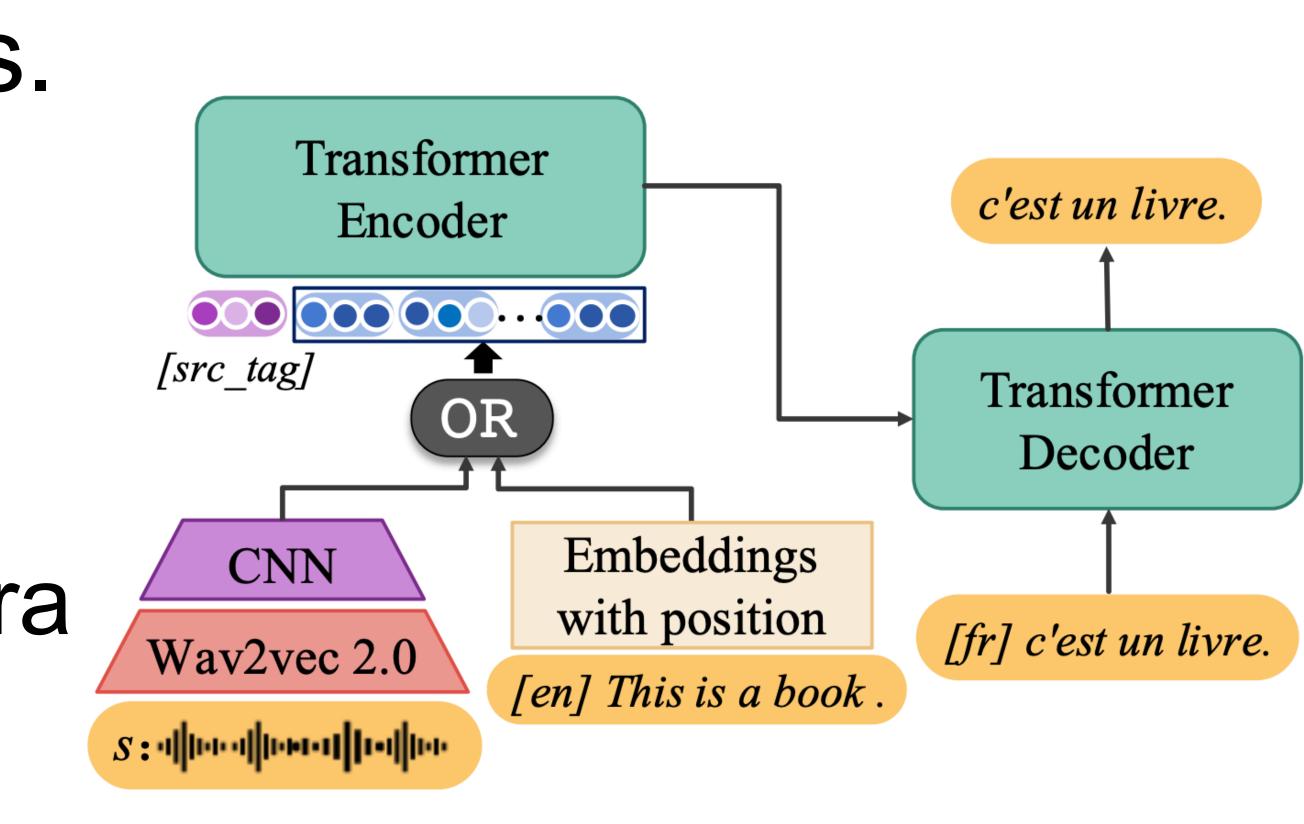


# Multi-task learning leads to better ST

To joint train
 ST, ASR and MT tasks.

Advantages:
 Better generalization
 Utilizing large-scale extra

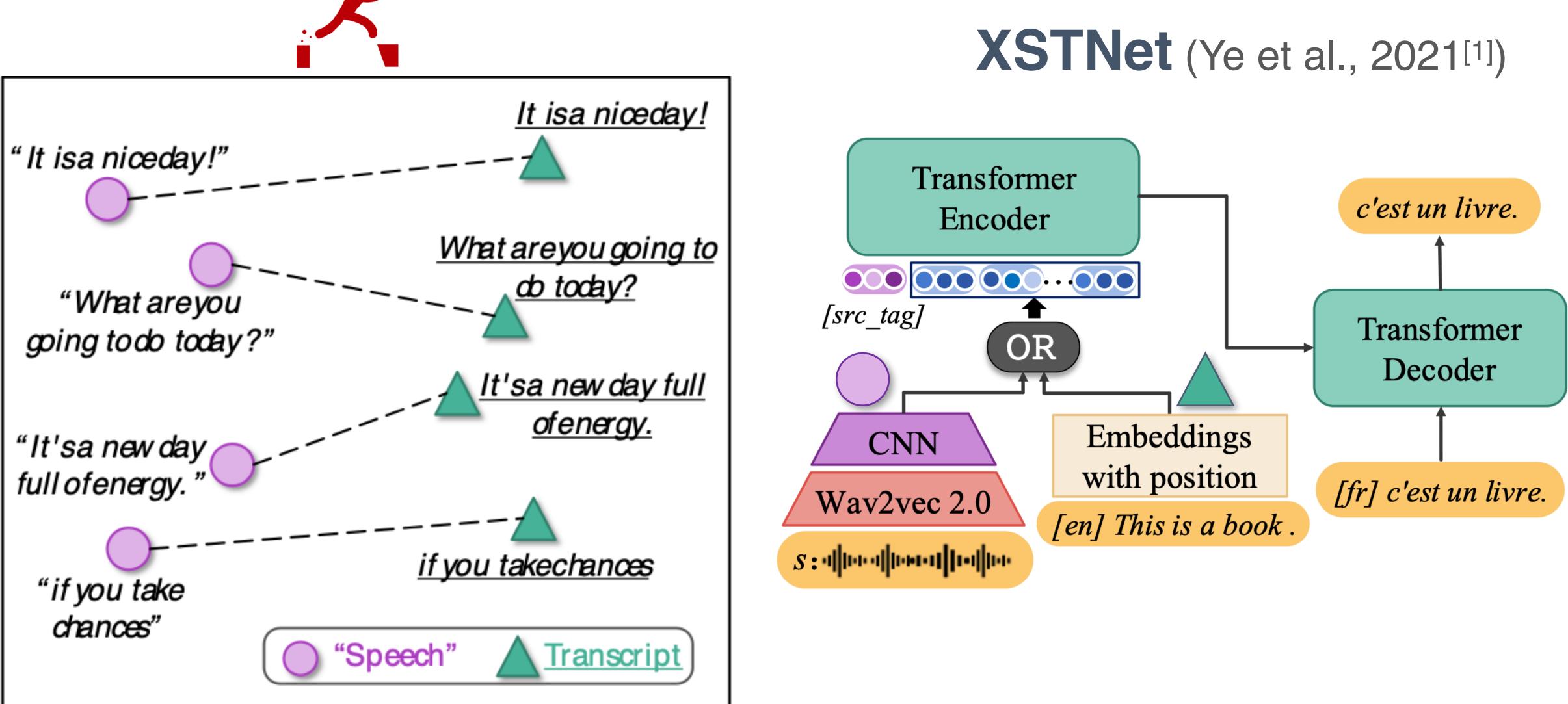
[1] Rong Ye, Mingxuan Wang, and Lei Li. XSTNet: End-to-end Speech Translation via Cross-modal Progressive Training. InterSpeech 2021.



## **XSTNet** (Ye et al., 2021<sup>[1]</sup>)



# **Representation Perspective: Modality Gap Exists!**

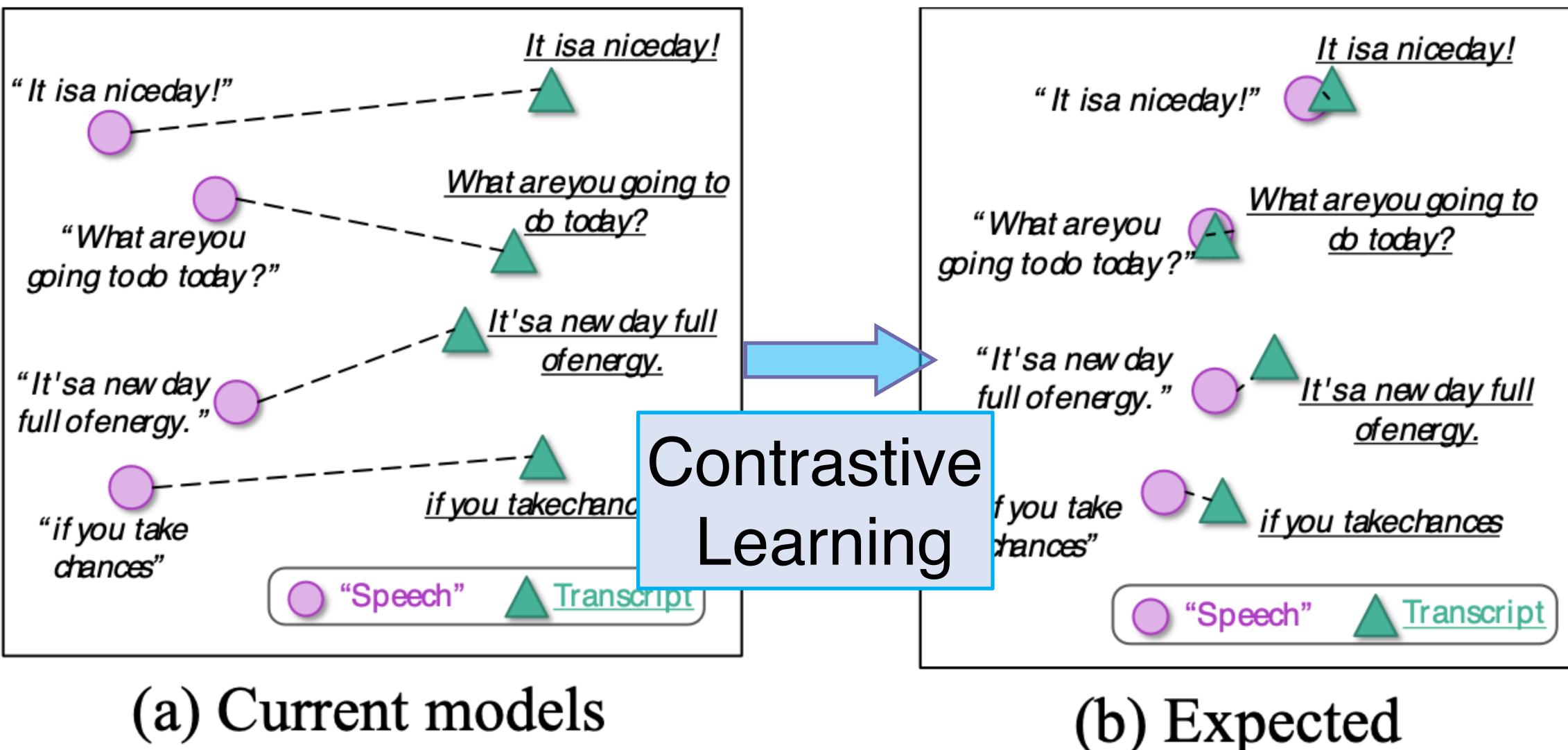


[1] Rong Ye, Mingxuan Wang, and Lei Li. XSTNet: End-to-end Speech Translation via Cross-modal Progressive Training. InterSpeech 2021.





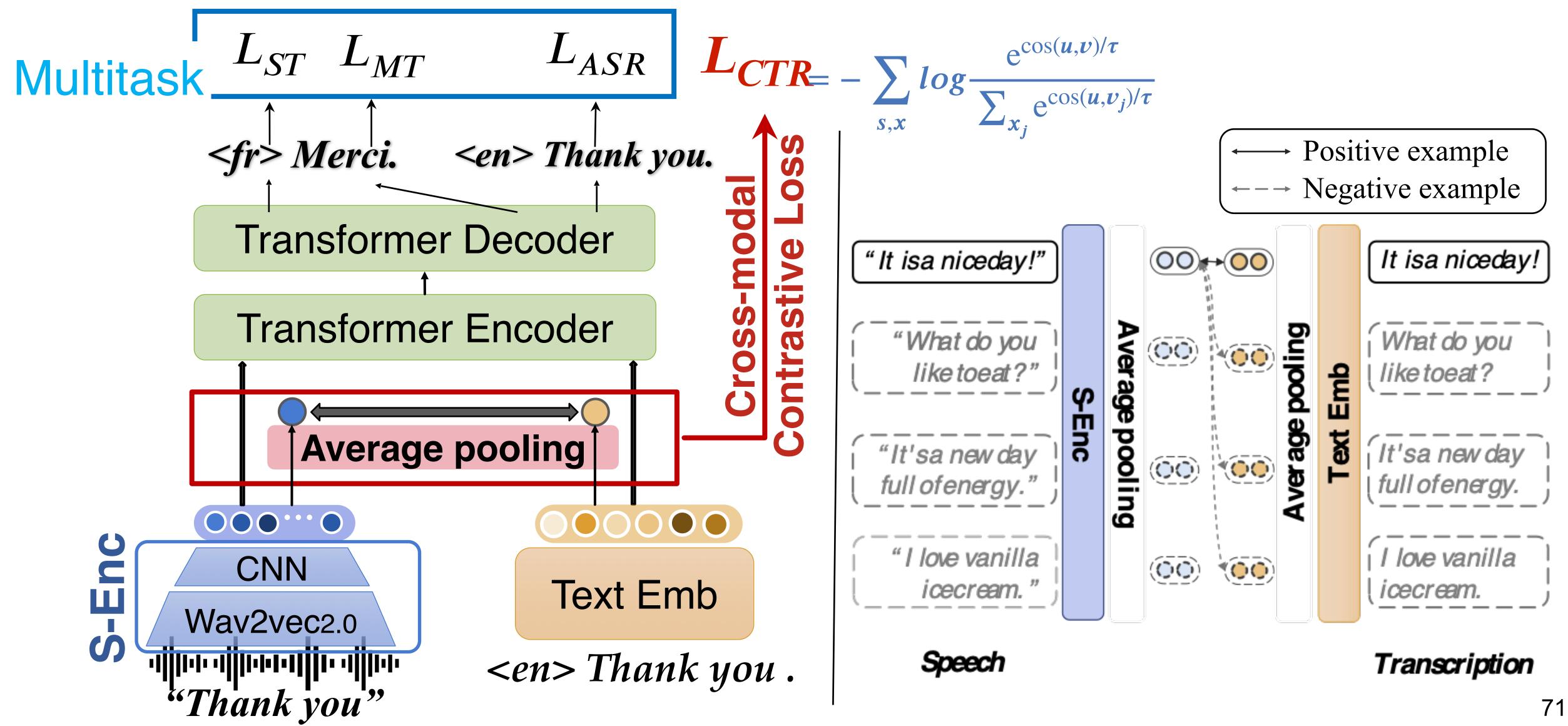
#### Text and speech with same meaning should be similar in representation!







# **Contrastive Learning (ConST)**



# **Experimental Setups**

### Datasets

-All 8 directions of MuST-C benchmark –MT datasets for pretraining

- Settings -without external MT data -with external MT data
- Baseline -W2v2-Transformer -XSTNet (Ye et. al.)<sup>[1]</sup>

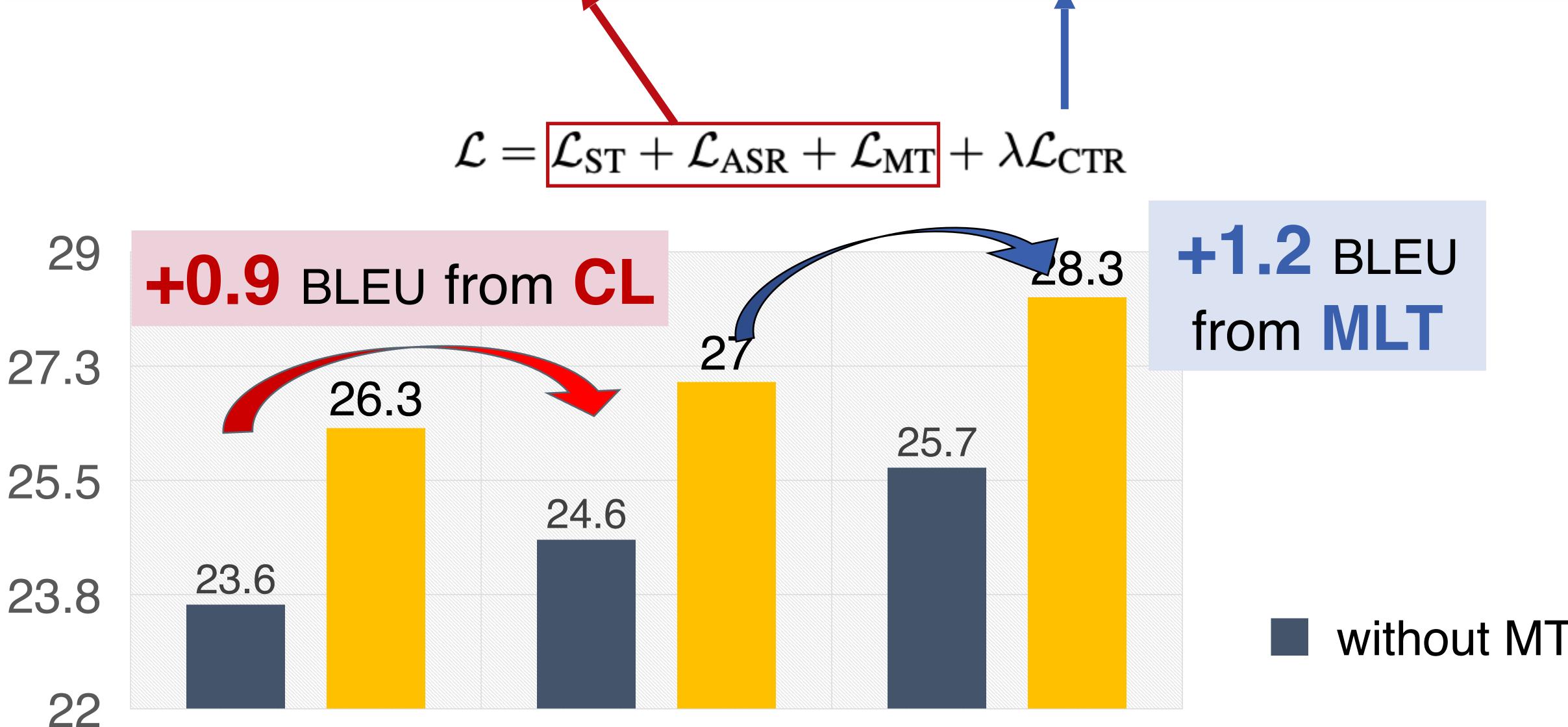
[1] Rong Ye, Mingxuan Wang, and Lei Li. XSTNet: End-to-end Speech Translation via Cross-modal Progressive Training. InterSpeech 2021.

|                  | ST (M      | uST-C) | MT      | ٦      |
|------------------|------------|--------|---------|--------|
| $En \rightarrow$ | hours      | #sents | name    | #sents |
| De               | 408        | 234K   | WMT16   | 4.6M   |
| Fr               | 492        | 280K   | WMT14   | 40.8M  |
| Ru               | 489        | 270K   | WMT16   | 2.5M   |
| Es               | 504        | 270K   | WMT13   | 15.2M  |
| Ro               | 432        | 240K   | WMT16   | 0.6M   |
| It               | 465        | 258K   | OPUS100 | 1.0M   |
| Pt               | 385        | 211K   | OPUS100 | 1.0M   |
| NI               | 385<br>442 | 253K   | OPUS100 | 1.0M   |



72

## **Both Multi-task and Contrastive Learning are important!**



L\_st

 $L_st + L_ctr$ 

ConST







# **Contrastive Learning improves ST**

| Madala                               | I            | External Data |              |         |         | BLEU |      |      |      |      |      |      |      |
|--------------------------------------|--------------|---------------|--------------|---------|---------|------|------|------|------|------|------|------|------|
| Models                               | Speech       | Text          | ASR          | MT      | De      | Es   | Fr   | It   | Nl   | Pt   | Ro   | Ru   | Avg. |
|                                      |              |               | w/o e        | xternal | MT data | ı    |      |      |      |      |      |      |      |
| Fairseq ST (Wang et al., 2020a)      | -            | _             | -            | -       | 22.7    | 27.2 | 32.9 | 22.7 | 27.3 | 28.1 | 21.9 | 15.3 | 24.8 |
| NeurST (Zhao et al., 2021a)          | -            | -             | -            | -       | 22.8    | 27.4 | 33.3 | 22.9 | 27.2 | 28.7 | 22.2 | 15.1 | 24.9 |
| Espnet ST (Inaguma et al., 2020)     | -            | -             | -            | -       | 22.9    | 28.0 | 32.8 | 23.8 | 27.4 | 28.0 | 21.9 | 15.6 | 25.1 |
| Dual Decoder (Le et al., 2020)       | -            | -             | -            | -       | 23.6    | 28.1 | 33.5 | 24.2 | 27.6 | 30.0 | 22.9 | 15.2 | 25.6 |
| W-Transf. (Ye et al., 2021)          | $\checkmark$ | -             | -            | -       | 23.6    | 28.4 | 34.6 | 24.0 | 29.0 | 29.6 | 22.4 | 14.4 | 25.7 |
| Speechformer (Papi et al., 2021)     | -            | -             | -            | -       | 23.6    | 28.5 | -    | -    | 27.7 | -    | -    | -    | -    |
| LightweightAdaptor (Le et al., 2021) | -            | -             | -            | -       | 24.7    | 28.7 | 35.0 | 25.0 | 28.8 | 31.1 | 23.8 | 16.4 | 26.6 |
| Self-training (Pino et al., 2020)    | $\checkmark$ | -             | $\checkmark$ | -       | 25.2    | -    | 34.5 | -    | -    | -    | -    | -    | -    |
| SATE (Xu et al., 2021)               | -            | -             | -            | -       | 25.2    | -    | -    | -    | -    | -    | -    | -    | -    |
| BiKD (Inaguma et al., 2021)          | -            | -             | -            | -       | 25.3    | -    | 35.3 | -    | -    | -    | -    | -    | -    |
| Mutual-learning (Zhao et al., 2021b) | -            | -             | -            | -       | -       | 28.7 | 36.3 | -    | -    | -    | -    | -    | -    |
| XSTNet (Ye et al., 2021)             | $\checkmark$ | -             | -            | -       | 25.5    | 29.6 | 36.0 | 25.5 | 30.0 | 31.3 | 25.1 | 16.9 | 27.5 |
| ConST                                | ✓            | -             | -            | -       | 25.7    | 30.4 | 36.8 | 26.3 | 30.6 | 32.0 | 24.8 | 17.3 | 28.0 |
|                                      |              |               | wi ex        | xternal | MI aata |      |      |      |      |      |      |      |      |
| Chimera (Han et al., 2021)           |              |               |              | /       | 27.1†   | 30.6 | 35.6 | 25.0 | 20.2 | 30.2 | 24.0 | 17.4 | 27.4 |
| XSTNet (Ye et al., 2021)             |              | _             | _            | √       | 27.1    | 30.8 | 38.0 | 26.4 | 31.2 | 32.4 | 25.7 | 18.5 | 28.8 |
| STEMM (Fang et al., 2022)            |              | _             | _            | √       | 28.7    | 31.0 | 37.4 | 25.8 | 30.5 | 31.7 | 24.5 | 17.8 | 28.4 |
| ConST                                | $\checkmark$ | -             | -            | ✓       | 28.3    | 32.0 | 38.3 | 27.2 | 31.7 | 33.1 | 25.6 | 18.9 | 29.4 |

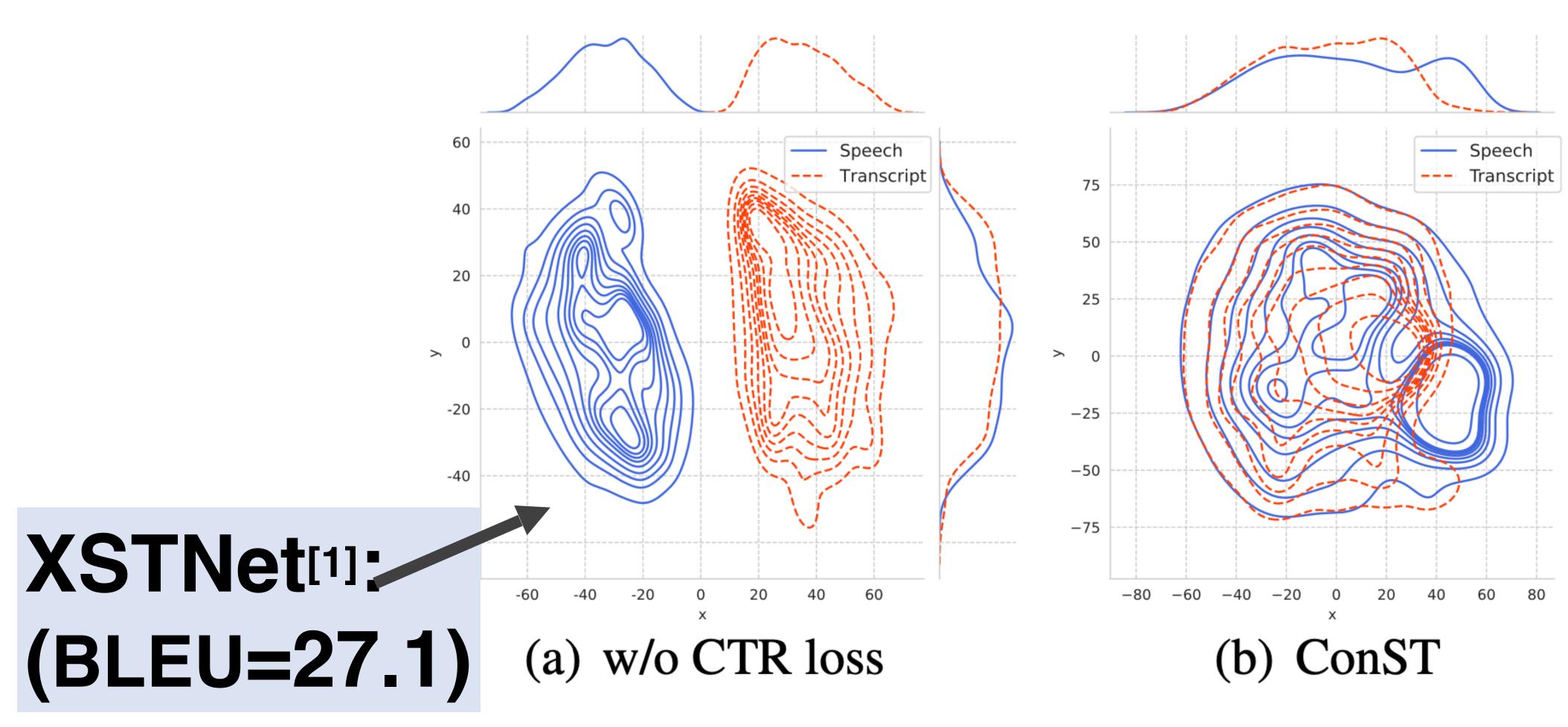
| Models                               | External Data |      |              |              | BLEU    |      |      |      |      |      |      |      |      |    |
|--------------------------------------|---------------|------|--------------|--------------|---------|------|------|------|------|------|------|------|------|----|
| wiodels                              | Speech        | Text | ASR          | MT           | De      | Es   | Fr   | It   | NI   | Pt   | Ro   | Ru   | Avg. |    |
|                                      |               |      | w/o e        | xternal      | MT data | ı    |      |      |      |      |      |      |      | -  |
| Fairseq ST (Wang et al., 2020a)      | -             | -    | -            | -            | 22.7    | 27.2 | 32.9 | 22.7 | 27.3 | 28.1 | 21.9 | 15.3 | 24.8 | -  |
| NeurST (Zhao et al., 2021a)          | -             | -    | -            | -            | 22.8    | 27.4 | 33.3 | 22.9 | 27.2 | 28.7 | 22.2 | 15.1 | 24.9 |    |
| Espnet ST (Inaguma et al., 2020)     | -             | -    | -            | -            | 22.9    | 28.0 | 32.8 | 23.8 | 27.4 | 28.0 | 21.9 | 15.6 | 25.1 |    |
| Dual Decoder (Le et al., 2020)       | -             | -    | -            | -            | 23.6    | 28.1 | 33.5 | 24.2 | 27.6 | 30.0 | 22.9 | 15.2 | 25.6 |    |
| W-Transf. (Ye et al., 2021)          | ✓             | -    | -            | -            | 23.6    | 28.4 | 34.6 | 24.0 | 29.0 | 29.6 | 22.4 | 14.4 | 25.7 |    |
| Speechformer (Papi et al., 2021)     | -             | -    | -            | -            | 23.6    | 28.5 | -    | -    | 27.7 | -    | -    | -    | -    |    |
| LightweightAdaptor (Le et al., 2021) | -             | -    | -            | -            | 24.7    | 28.7 | 35.0 | 25.0 | 28.8 | 31.1 | 23.8 | 16.4 | 26.6 |    |
| Self-training (Pino et al., 2020)    | ✓             | -    | $\checkmark$ | -            | 25.2    | -    | 34.5 | -    | -    | -    | -    | -    | -    |    |
| SATE (Xu et al., 2021)               | -             | -    | -            | -            | 25.2    | -    | -    | -    | -    | -    | -    | -    | -    |    |
| BiKD (Inaguma et al., 2021)          | -             | -    | -            | -            | 25.3    | -    | 35.3 | -    | -    | -    | -    | -    | -    |    |
| Mutual-learning (Zhao et al., 2021b) | -             | -    | -            | -            | -       | 28.7 | 36.3 | -    | -    | -    | -    | -    | -    | 1. |
| XSTNet (Ye et al., 2021)             | $\checkmark$  | -    | -            | -            | 25.5    | 29.6 | 36.0 | 25.5 | 30.0 | 31.3 | 25.1 | 16.9 | 27.5 |    |
| ConST                                | ✓             | -    | -            | -            | 25.7    | 30.4 | 36.8 | 26.3 | 30.6 | 32.0 | 24.8 | 17.3 | 28.0 |    |
|                                      |               |      | wi ex        | xternal I    | NI aata |      |      |      |      |      |      |      |      | _  |
| Chimere (Hen et al., 2021)           |               |      |              | /            | 27.1†   | 30.6 | 25.6 | 25.0 | 20.2 | 30.2 | 24.0 | 174  | 27.4 | -  |
| XSTNet (Ye et al., 2021)             | ,<br>,        | _    | _            | √            | 27.1    | 30.8 | 38.0 | 26.4 | 31.2 | 32.4 | 25.7 | 18.5 | 28.8 |    |
| STEMM (Fang et al., 2022)            | ,<br>,        | _    | _            | ,<br>,       | 28.7    | 31.0 | 37.4 | 25.8 | 30.5 | 31.7 | 24.5 | 17.8 | 28.4 | 1' |
| ConST                                | · √           | -    | -            | $\checkmark$ | 28.3    | 32.0 | 38.3 | 27.2 | 31.7 | 33.1 | 25.6 | 18.9 | 29.4 |    |



74

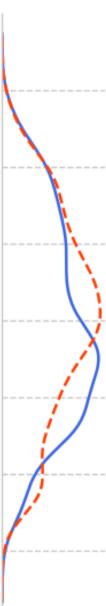


## Visualization: CL draws the distance of two modalities!



[1] Rong Ye, Mingxuan Wang, and Lei Li. XSTNet: End-to-end Speech Translation via Cross-modal Progressive Training. InterSpeech 2021.





75

# Wanna have a try?

## <u>https://huggingface.co/spaces/ReneeYe/ConST-speech2text-</u> translator



#### \*Best practice on *Chrome*



#### ConST: an end-to-end speech translator

to record audio.

From English to

German

German

ConST is an end-to-end speech-to-text translation model, whose algorithm corresponds to the NAACL 2022 paper "Cross-modal Contrastive Learning for Speech Translation" (see the paper at https://arxiv.org/abs/2205.02444 for more details). This is a live demo English into eight European languages, p.s. For





# MT works from my group

#### **Machine Translation**

### **VOLT**

- LaSS ACL 2021
- best paper award ACL 2021

# MRAS

- **EMNLP 2020** ACL 2021

#### **MGNMT**

**ICLR 2020** 

#### **KSTER**

**EMNLP 2021** 

- **NAT-theory**
- ICML 2022

- **GLAT**
- ACL 2021
- REDER

#### NeurIPS 2021

#### Graformer

## EMNLP-Findings 2021

## CIAT

EMNLP-Findings 2021

#### switch-GLAT

ICLR 2022

## **Speech Translation**





### ACL-Findings 2021 **XSTNet**

# **MoSST**

ACL 2022

STEMM InterSpeech 2021ACL 2022 ConST NAACL 2022

Open Source Library

# High performance sequence inference

https://github.com/bytedance/lightseq

## MeurST neural speech translation toolkit

https://github.com/bytedance/neurst



- Transformer is powerful MT model
- MT is still challenging
- Benefits of MNMT
  - boosting performance on low-resource
  - economic in training/deployment/maintenance
- Bringing representations of words/sentences closer across languages/modality proves beneficial
  - mRASP & mRASP2: augmenting data with randomly substitute of words from bilingual lexicon + monolingual reconstruction + contrastive learning
  - ConST: contrastive learning to bring speech and text representation closer











### • Code: -mRA https://github.com/PANXiao1994/mRASP2 – ConST: <u>https://github.com/ReneeYe/ConST</u> Joint work with



Mingxuan Wang



Rong Ye



Xiao Pan



Qiangian Dong



Jingjing Xu



Xiaohui Wang



Zehui Lin



Ying Xiong



Liwei Wu

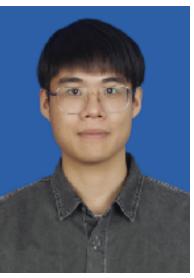


Chun Gan





Yu Bao



Lihua Qian

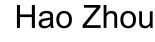


Zaixiang Zheng Yaoming Zhu





Zewei Sun





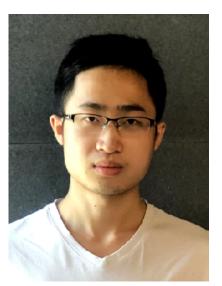
Xian Qian



Yang Wei



Jiangtao Feng Chenyang Huang



Chi Han



