
Scaling Strategic Reasoning 
for Large Language Models

Lei Li

June 19, 2025



• Solve Algorithmic Problems with Self-generated Oracles

• Syntax-Error Free and Generalizable Tool-Use for LLMs

• Cooperative Study Assistant for Complex Reasoning Tasks 

• Final thoughts
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ALGO: Synthesizing Algorithmic Programs 

with LLM-Generated Oracle Verifiers
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Given an integer n, implement a function f(n) that computes  1 

+ 2 + 3 + … + n.

Can LLMs generate correct and efficient programs?

def f(n):
return 1+2+3+…+n

def f(n):
return sum(range(1,n+1))

def f(n):
return (1+n)*n//2

LLM Gen1:

LLM Gen2:

Ideal:

 

but inefficient
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• Algorithm ideas

• Data Structure

• Math derivation

Why Algorithmic Problems are Hard for LLM 

(and Human) 

def f(n):
return (1+n)*n//2

Given an integer n, implement 

a function f(n) that computes  

1 + 2 + 3 + … + n.
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LLMs can generate brute-force solutions

Given an integer n, implement a function f(n) that computes  1 

+ 2 + 3 + … + n. Please do not care about efficiency, use 

brute-force approach.

def f(n):
return sum(range(1,n+1))
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LLMs can generate brute-force programs
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But not 

efficient!
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• Using LLM generated brute-force program as an oracle

• Use LLM to generate test input data and Oracle to compute 

outputs ➔ synthetic test cases

• Instruct LLM to generate efficient programs

• Verify program’s correctness using the synthetic test cases

15

Proposed Solution ALGO: Intuition

Zhang, Wang, Xia, Wang, Lei Li. ALGO: Synthesizing Algorithmic Programs with Generated Oracle Verifiers, NeurIPS 2023.



ALGO
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Zhang, Wang, Xia, Wang, Lei Li. ALGO: Synthesizing Algorithmic Programs with Generated Oracle Verifiers, NeurIPS 2023.

Problem Verifier

LLMOracle Generation

Prompt

Reference Oracle

slow, but correct

Input 

Generator
Input

Code

Output

Oracle

Output

Verification results & failed test cases

Coder
Potential Solution

fast, maybe incorrect

Problem Solution 

Generation

Prompt



You are given an integer array representing the ranks of some 

mechanics. 

ith mechanic has ranks[i], and can repair n cars in rank[i] * 

n^2 minutes.

Given the total number of cars . 

Return the minimum time taken to repair all the cars.

Example: Repair Cars

https://leetcode.com/problems/minimum-time-to-repair-cars/ 17
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Example: Repair Cars

• Mechanics: 3

• Rank: [3, 1, 2] 

• Cars: 6

Allocation(n) 2 2 2

Rank(r) 3 1 2

Time(r*n^2) 12 4 8

Total time 12

Evenly 

1 3 2

3 1 2

3 9 8

9

Best
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Repair Cars: Brute-force Algorithm

• Key idea: Enumerate all possible cars for each

• Plan 1: [1, 1, 4]

• Plan 2: [1, 2, 3]

• Plan 3: [1, 3, 2]

• Calculate time 

• Compare and obtain min time

Allocation(n)

Rank(r)

Time(r*n^2)

Total time

1 3 2

3 1 2

3 9 8

9

Best
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Please solve this problem with a brute-force algorithm. 

You are given an integer array ranks representing the ranks of some 

mechanics. ranks[I] …omitted… Return the minimum time taken to repair all 

the cars.

### Examples

{examples, omitted}

Instead of defining your function in the Solution class, change your 

classname to BruteforceSolution. Please make sure you use the most 

straightforward and brute-force algorithm to solve the problem. Do not 

consider any efficiency issue, make the solution as brute-force as possible. 

It's okay for you to enumerate over a very large search space as long as the 

solution is correct.

ChatGPT prompt
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class BruteforceSolution:
  def repairCars(self, ranks: List[int], cars: int) -> int:
    num_mechanics = len(ranks)
    min_time = float('inf’)
    def generate_allocations(allocation, remaining_cars):
      nonlocal min_time
      if len(allocation) == num_mechanics:
        if sum(allocation) == cars:
          times = [ranks[i] * allocation[i] * allocation[i]
                   for i in range(num_mechanics)]
          max_time = max(times)
          min_time = min(min_time, max_time)
        return
      for num_cars in range( remaining_cars + 1):
        new_allocation = allocation + [num_cars]
        new_remaining_cars = remaining_cars - num_cars
        generate_allocations(new_allocation, new_remaining_cars)         
     generate_allocations([], cars)
     return min_time



1. Gen Oracle: Using LLM generated brute-force program as 

an oracle

2. Explore Idea: Prompt LLM to random sample/enumerate 

an “idea”

3. Gen Program: Use LLM to generate a program according 

to the “idea” 

4. Gen Cases: use LLM to generate test input data

5. Verify: both oracle and candidate on test cases.
22

ALGO: Key Idea

Zhang, Wang, Xia, Wang, Lei Li. ALGO: Synthesizing Algorithmic Programs with Generated Oracle Verifiers, NeurIPS 2023.



LLM Generating Candidate Solution
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Potential Binary Search Solution
class Solution:

def repairCars(self, ranks: List[int], cars: int) -> int:
def countCarsRepaired(ranks, minutes):

total_cars = 0
for rank in ranks:

n = int((minutes / rank) ** 0.5)
total_cars += n

return total_cars
left = 1
right = max(ranks) * cars * cars
while left < right:

mid = (left + right) // 2
if countCarsRepaired(ranks, mid) < cars:

left = mid + 1
else:

right = mid
return left

Potential Greedy Solution
class Solution:

def repairCars(self, ranks: List[int], cars: int):
ranks.sort()
max_repair_time = 0
assigned_cars = 0
for rank in ranks:

num_cars = (cars + len(ranks) - assigned_cars - 1) // (len(ranks) - assigned_cars)
num_cars = min(num_cars, cars - assigned_cars)
repair_time = rank * num_cars * num_cars
max_repair_time = max(max_repair_time, repair_time)
assigned_cars += num_cars

return max_repair_time
num_cars = min(num_cars, cars - assigned_cars)
repair_time = rank * num_cars * num_cars
max_repair_time = max(max_repair_time, repair_time)
assigned_cars += num_cars

return max_repair_time



Comparing Outputs with the Oracle

24

16

100

Potential Greedy Solution
class Solution:
def repairCars(self, ranks: List[int], cars: int):
ranks.sort()
max_repair_time = 0
assigned_cars = 0
for rank in ranks:
num_cars = (cars + len(ranks) - assigned_cars - 1) // (len(ranks) - assigned_cars)
num_cars = min(num_cars, cars - assigned_cars)
repair_time = rank * num_cars * num_cars
max_repair_time = max(max_repair_time, repair_time)

assigned_cars += num_cars
return max_repair_time
num_cars = min(num_cars, cars - assigned_cars)
repair_time = rank * num_cars * num_cars
max_repair_time = max(max_repair_time, repair_time)

assigned_cars += num_cars
return max_repair_time

Reference Oracle Generated by LLM
class BruteforceSolution:
def repairCars(self, ranks: List[int], cars: int) -> int:
num_mechanics = len(ranks)
min_time = float('inf')
def generate_allocations(allocation, remaining_cars):

nonlocal min_time
if len(allocation) == num_mechanics:
if sum(allocation) == cars:
times = [ranks[i] * allocation[i] * \

allocation[I] for i in range(num_mechanics)]

max_time = max(times)
min_time = min(min_time, max_time)
return

for num_cars in range(remaining_cars + 1):
new_allocation = allocation + [num_cars]

new_remaining_cars = remaining_cars - num_cars
generate_allocations(new_allocation,\

new_remaining_cars)
generate_allocations([], cars)
return min_time

Potential Binary Search Solution
class Solution:
def repairCars(self, ranks: List[int], cars: int) -> int:

def countCarsRepaired(ranks, minutes):
total_cars = 0
for rank in ranks:

n = int((minutes / rank) ** 0.5)
total_cars += n

return total_cars
left = 1
right = max(ranks) * cars * cars
while left < right:
mid = (left + right) // 2

if countCarsRepaired(ranks, mid) < cars:
left = mid + 1

else:
right = mid

return left
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System Judge:
Accepted

System Judge:
Wrong

Answer
Test Input 𝐼0: ranks=[4,2,3,1],cars=10

𝐼1 𝐼2 𝐼3 . . .

Test Inputs Generated by ALGO



• ALGO works with all sorts of models and strategies.

• Base Model: Codex, GPT-2, ChatGPT, …

• Strategy for Exploring Algorithmic “Ideas”

o Sampling

o Lookahead Search

o Idea Sampling

ALGO implementation

25
Zhang, Wang, Xia, Wang, Lei Li. ALGO: Synthesizing Algorithmic Programs with Generated Oracle Verifiers, NeurIPS 2023.



ALGO generated oracles are mostly correct.

ALGO oracles

on LeetCode

Correct rate: 88.5

But inefficient!
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Zhang, Wang, Xia, Wang, Lei Li. ALGO: Synthesizing Algorithmic Programs with Generated Oracle Verifiers, NeurIPS 2023.

31.4%

57.1%

Accepted Time Limit Exceeded

Runtime Error Wrong Answer



ALGO solves 3x problems!
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Zhang, Wang, Xia, Wang, Lei Li. ALGO: Synthesizing Algorithmic Programs with Generated Oracle Verifiers, NeurIPS 2023.



• We participate in a real codeforce 

contest (905) on Oct 22, 2023

• Human can submit many times

• We use both GPT-4 (version Jun 

13, 2023) and ALGO(+GPT-4) to 

sample 20 submissions

• 50% human solved < 3 problems

28

Real Competition: ALGO is top competitive to Human

0

1

2

3

4

CodeForce 905

Ave num problem solved

GPT-4 ALGO

=top 50%-80% in final 

standing competing human



• LLM self-generated slow programs could ensure 

correctness, and can be used as oracles

• ALGO could verify candidate programs with oracles and 

synthesized test cases. 

• ALGO could generate efficient programs for algorithmic 

problems!

29

Summary of ALGO

Zhang, Wang, Xia, Wang, Lei Li. ALGO: Synthesizing Algorithmic Programs with Generated Oracle Verifiers, NeurIPS 2023.



• Solve Algorithmic Problems with Self-generated Oracles

• Syntax-Error Free and Generalizable Tool-Use for LLMs

• Cooperative Study Assistant for Complex Reasoning Tasks 

• Final thoughts

30
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ToolDec: Syntax Error-Free and Generalizable 

Tool Use for LLMs via Finite-State Decoding

Kexun Zhang*,  Hongqiao Chen*,  Lei Li,  William Yang Wang

31
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Tool-Using LLM Agent

https://arxiv.org/pdf/2302.07842.pdf



Proposed ToolDec eliminates syntax errors
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Tools: multiply(a, b) computes the product of numbers a and b

Q: The diameter of a circle is 123, π=3.14, what’s its perimeter?

Its perimeter is

pi x 123 = 196

Its perimeter is
product(3.14, 123)

Its perimeter is

multiply(pi, 123)

Its perimeter is
multiply(3.14, 123)

Generating

Wrong Answer
Non-Existent Tool Invalid Tool

Argument
Correct Tool Call

LLM LLM + Tool LLM + ToolDec



ToolDec: Finite-State Constrained Decoding
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FSM are automatically constructed from function signatures
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Int
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Advantages of ToolDec

Syntax-error 

free
zero-shot Document-free

LLM 

Fine-tuning

In-context 

Learning

ToolDec
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• Solve Algorithmic Problems with Self-generated Oracles

• Syntax-Error Free and Generalizable Tool-Use for LLMs

• Cooperative Study Assistant for Complex Reasoning Tasks 

• Final thoughts

36
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Learning from Mistakes via Cooperative 

Study Assistant for Large Language Models

37

Danqing Wang         Lei Li
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Probability of selecting two orange balls + Probability of selecting one 

orange ball and one blue ball = 1/6 + 1/3 = = 1/2

Please review your answer, find problem, and revise. 

I didn't account properly for the condition that's given ("at least one of 

them is orange") in the calculation of probabilities. The probability that 

both balls drawn are orange given that at least one is orange is 1/5.

We have two orange and two blue balls. We randomly pick two balls. 

You know one of them is orange. What is the probability that the other 

ball is also orange? 

“Let us use self-reflection”
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85.79%.

Please review your answer, find problem, and revise. 

I've identified a mistake in the way the probabilities are combined for 

the three cabs. The correct answer is … 85.72%

Taxis arrive at a hotel with exponentially distributed time duration and  

average 2 minutes. What is the probability that three taxis arrive within 

6 minutes?

“Let us use self-reflection”



Change after LLM-reflection

40

Large Language Models Cannot Self-Correct yet

Large Language Models Cannot Self-Correct Reasoning Yet, Huang et al, 2023

No change, 

43%

turns wrong, 

40%

still wrong, 

12%

correcte…

No change, 

74.70%

turns wrong, 

8.80%

still wrong, 

8.90%

correcte…
CommonSenseQA GSM8K



• The ground truth to guide refinement

• A model to provide informative feedback

• A memory to store previous mistakes and suggestions

41

To improve LLM’s reasoning, we need



• Help LLMs to learn from mistakes by interactive cooperation

• Main LLM (big, could not finetune)

oGenerate initial response according to the query

o take feedback and revise response

• Study assistant (small, easy to train)

o take main LLM response and provide feedback

o store mistakes and suggestions to memory

SALAM: A Cooperative Study Assistant

42



• A separate GPT-LLM

• Instruction: query & ground truth, 

previous response, current 

response

• Generates:

o  Analysis (why is wrong)

o  Guideline (how to avoid)

43

Study Assistant to guide revision



• Mistake Gathering (Training)

o with ground truth, collect and 
store mistakes and feedback

o several iterations between two 
agents

• Examination (Inference)
o one pass interaction

o no ground truth

o retrieve similar mistakes and 
feedback

44

SALAM Learns from Mistake Memory

Query

Response
Ground Truth

New query

Mistake
Gathering ExaminationMistake Memory

Retrieve

Analysis
Guideline

Key

Value

Similarity
(𝒕𝒐𝒑𝒌, 𝜽)

Response
Analysis
Guideline
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•  Agnostic to the main LLM architecture (GPT, Flan-T5, 

LLaMA, ...) 

o  train a (relatively small) SA LLM to provide feedback

o  collect ~1k feedback examples from GPT4

46

Model-agnostic Study Assistant (SA)

(query & ground truth, previous response, current response) => 
feedback



• Provide specific suggestions for main LLM

• Model the SA-LLM interaction as MDP 

o  Policy 𝜋(𝑎|𝑠): provide feedback based on current state

o  State S: (query, response, context)

o  Action A: feedback generated by study assistant

o  Reward R: LLM performance
• 1 if the LLM’s revised response is correct

• 0 otherwise

47

Model-specific Study Assistant (SA)



•  a replay dataset 𝐷𝑜𝑛 = 𝑖=0ڂ
𝑁 𝑡=1ڂ

𝑇 (𝑠𝑡
(𝑖)

, 𝑎𝑡
(𝑖)

)

o N examples, and T iteration

•  calculate the reward and keep
   𝑅 𝑠𝑡

𝑖
, 𝑎𝑡

𝑖
= 1 

•  Get the filtered successful dataset ෩𝐷𝑜𝑛

•  finetune the study assistant on ෩𝐷𝑜𝑛

48

Learn Study Assistant Policy via Imitation Learning

𝒔𝟏
(𝟎)

:  𝒕 = 𝟏 𝒇𝒐𝒓 𝒊 = 𝟎

𝒂𝟏
(𝟎)



SALAM Significantly Boosts LLM Performance

49
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Weak to Strong Learning!

50

•  SALAM 7B can boosts GPT-4 performance on reasoning
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Guideline: When evaluating sentences with multiple 
adjectives, consider the general rules of adjective order in 
English, such as opinion, size, age, shape, color, origin, 
material, and purpose.

LLM

Which sentence has the correct adjective order:
(A)red little silly cloth eating rectangular sock
(B)silly little rectangular red cloth eating sock

Mistake Collections

Query: Which sentence has the correct adjective order: 
(A) American triangular computer
(B) triangular American computer
Incorrect Answer: 
American triangular computer

(B)

Query

Retrieve



SALAM learns better policy with Imitation Learning

53

Guideline: ensure that you accurately calculate the date by 
considering the correct day of the month and subtracting 
the specified number of months from the given date. 

Guideline: carefully consider the given information, such 
as the frequency of visits and the current visit number, to 
accurately calculate the elapsed time. Then, use this 
information to determine the correct date.

Jane visits the bookstore on the 16th of each month starting from the October 
of 2009. It is her 5th visit to the bookstore today. What is the date one year 
ago from today?
Previous answer: 08/16/2009
Correct answer: 02/16/2009

SALAM

SALAM w/ IL



• Cooperation between LLMs and study assistant (a second 

LLM)

• Guidance from SA improves LLMs’ performance

• Model-specific guidance works better

• Learning from mistake Memory can avoid similar mistakes 

Summary of SALAM
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• LLM needs feedback to improve performance 

(coding/reasoning)

• But, vague or incorrect feedback could mislead LLMs

• Where are the feedback from?

o Self-generated oracle (when oracles are reliable?)

o Another smaller LLM (or a set of LLMs)

o Separately trained Metric (InstructScore, but not 

COMET/BLEURT/SEScore) [Xu et al, EMNLP 2023]

oMemory (similar success or failures in the past)

Some Thoughts on LLM Reasoning
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Scaling Strategic Reasoning for Large 

Language Models

56

ALGO ToolDec SALAM

Generate 

Algorithmic 

Programs

Accurate

Tool-using LLM

Cooperative 

LLMs to learn 

from mistakes

Kexun Zhang     Danqing Wang    Hongqiao Chen  Jingtao Xia    William Yang Wang 

Lei Li (leili@cs.cmu.edu)


	Default Section
	Slide 1: Scaling Strategic Reasoning for Large Language Models

	ALGO
	Slide 9: Outline
	Slide 10: ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle Verifiers
	Slide 11: Can LLMs generate correct and efficient programs?
	Slide 12: Why Algorithmic Problems are Hard for LLM  (and Human) 
	Slide 13: LLMs can generate brute-force solutions
	Slide 14: LLMs can generate brute-force programs
	Slide 15: Proposed Solution ALGO: Intuition
	Slide 16: ALGO
	Slide 17: Example: Repair Cars
	Slide 18: Example: Repair Cars
	Slide 19: Repair Cars: Brute-force Algorithm
	Slide 20
	Slide 21
	Slide 22: ALGO: Key Idea
	Slide 23: LLM Generating Candidate Solution
	Slide 24: Comparing Outputs with the Oracle
	Slide 25: ALGO implementation
	Slide 26: ALGO generated oracles are mostly correct.
	Slide 27: ALGO solves 3x problems!
	Slide 28: Real Competition: ALGO is top competitive to Human
	Slide 29: Summary of ALGO

	ToolDec
	Slide 30: Outline
	Slide 31: ToolDec: Syntax Error-Free and Generalizable Tool Use for LLMs via Finite-State Decoding
	Slide 32: Tool-Using LLM Agent
	Slide 33: Proposed ToolDec eliminates syntax errors
	Slide 34: ToolDec: Finite-State Constrained Decoding
	Slide 35: Advantages of ToolDec

	SALAM
	Slide 36: Outline
	Slide 37: Learning from Mistakes via Cooperative Study Assistant for Large Language Models
	Slide 38
	Slide 39
	Slide 40: Large Language Models Cannot Self-Correct yet
	Slide 41: To improve LLM’s reasoning, we need
	Slide 42: SALAM: A Cooperative Study Assistant
	Slide 43: Study Assistant to guide revision
	Slide 44: SALAM Learns from Mistake Memory
	Slide 45
	Slide 46: Model-agnostic Study Assistant (SA)
	Slide 47: Model-specific Study Assistant (SA)
	Slide 48: Learn Study Assistant Policy via Imitation Learning
	Slide 49: SALAM Significantly Boosts LLM Performance
	Slide 50: Weak to Strong Learning!
	Slide 52
	Slide 53: SALAM learns better policy with Imitation Learning
	Slide 54: Summary of SALAM

	Summary
	Slide 55: Some Thoughts on LLM Reasoning
	Slide 56: Scaling Strategic Reasoning for Large Language Models


