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Can GenAl design molecules with desired functions?

Medicine
Vaccine
Enzyme - Biocatalysts

Biosensors (e.9. GFP) . ‘s

New materials




Commonality and Distinction in Language

and Molecule Generation
* Modeling
o Sequence of Discrete Tokens
o Discrete Structures
o Geometry (Unigque for molecules)

 Training: direct, contrastive, PPO

* (Generation
o Score-conditional Generation
o Iterative Editing



Discrete Sequences of Tokens

't was the best of times, it
was the worst of times, it was
the age of wisdom, it was the
age of foolishness, it was the
epoch of belief, it was the
epoch of incredulity, it was
the season of Light, it was the
season of Darkness, ...

Remdesivir:  C,;H;cN.OgP
SMLES representation:

CCC(CC)COC(=0)C(C)NP(=0)(0CC1
C(C(C(O1)(CH#N)C2=CC=C3N2N=CN
=C3N)0)0)0C4=CC=CC=C4



From Human Language to Protein Sequence
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* Proteins are building blocks of life

 Important biological functions
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Protein Sequences are much Longer than Text!
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Protein Language Model 1: Mask LM

» Using raw protein
sequences for pre-
training

o Training loss: predicting

Transformer encoder masked residues

 ESM [Meler et al 2021]
and ESM-2 [Lin et al
2023]
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Graph Neural Network
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Fig.1: The update function (or called transition, propagation, message passing, and
convolution) in GNNs. On a molecular graph, the GNN updates each atom vector

with its neighboring atom vectors non-linear transformed by neural network.
The molecular vector is obtained by summing (or mean) the atom vectors.

[Tsubaki et al, 2018.] 10



Modelling Geometry of Molecules

» Equivariant Graph Neural Network (EGNN)

Equivariance:

f)+z=f(x+2)
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[Satorres et al, 2021.]
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Guiding Protein Generation with Function Fitness

* Fitness functions P(S|x) can be trained using lab data

o e.g. Green Fluorescent Protein (avGFP) [Sakisyan et al 2016]
- Pa(x)P(S]x)
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Brooks et al. Conditioning by adaptive sampling for robust design. ICML 2019. 16



Pre-training Protein Generative Model
max Po(x|S) < Pa(x)P(S|x)
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» But the generated proteins will have very low fitness score!



ISEMPro: Intuition

i high fitness
protein prob.
Pg(x|S)

raw protein prob.
Pg(x)

variational
protein prob.

Qg (x)

19
Zhenaiao Song. Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Desien. ICML 2023.



ISEMPro Method

e [ntuition:

o Learning a proposal Q4 (x) to approximate
distribution of "good” proteins Py(x]|S)

¢* = argmax —Dy; (Pg(x]5)||Qqp (%)) ..L. o |
OEs:=in
° ' - K—O—8—M—!  pup
Model architecture: > -6y o
O tWO VAES ei(:) ei(@i, ) Ej(mj) |‘>Welght
o Augmented with MRF features

—> (u¢70¢)—>i ;VNAJ[\}‘(‘(;” 5 o) Trgr;scg?er
 Expectation-Maximization with T
Importance Sampling (self-learning)

Zhenaiao Song. Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Desien. ICML 2023.
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MRF: Learning the Combinatorial Structures

of Amino Acids

* These structure constraints are the results of evolutionary
process under nature selection
o Favorable amino-acid combinations
o Guiding model toward higher fitness landscape

Markov Random Field
€I; L j
A1) D
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AT )
= OO~ —O—N—M)—
A1) I
O—EO—EK—C——M)—
Homologous kA/ E—=V @ £ M
Sequences M

ei(x;) €ij(xs, ;) €5(x) 22
Zhenaiao Song. Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Desien. ICML 2023.



Integrating MRF into IsEMPro Generation

 MRFs features (i-th residue)
gi(x;) = g (x;), €11 (x5, a1.), ..o, €0 (x5, apg) ]
€ij (xi: aj-) — [gij (x;,aq), €ij (x;,az), ..., €ij (%1, az0)]

» Transformer decoder (autoregressive)
o First token input: latent vector (learned) Hy = Z

o Other input: combinatorial structure enhanced feature vector
H=emb(x;_)) +W=x* g,_1(x;_1),1<i<M

24
Zhenaiao Song. Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Desien. ICML 2023.



ISEM-Pro generates higher-fitness proteins

Average Fitness on Eight Protein Datasets
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Zhenaiao Song. Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Desien. ICML 2023.



ISEM-Pro generates more diverse proteins

Average Diversity on Eight Protein Datasets
200
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100

26
Zhenaiao Song. Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Desien. ICML 2023.



Green Fluorescent Protein designed by ISsEMPro
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Highlights of ISEM-Pro

« Using importance sampling inside the EM s efficient to
generate functional proteins

* The combinatorial enhanced latent generative model boosts
diverse and novel protein sequences

* The self-learning process helps to find proteins with higher
fitness scores

29
Zhenaiao Song. Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Desien. ICML 2023.



Protein Design Approaches

e Sequence-based Generation

« Structure-based Generation
o Secondary structure-based
o Inverse Folding

:> o Surface geometry

« Sequence-structure Co-design
o Protein monomer
o Protein complex

30



Protein-Protein Complex

« A molecular assembly formed when two or more protein
molecules interact and bind together

o Covid19 Sars-Cov2 ACE2 complex
o Biomedicine

32



Surface-based Protein Design

* Intuition: fill in the content
given an outline

« Complementary shapes

polarity or hydrophobicity s \
revents molecule binding ' '

. " » >
» Poorly placed charges, o2 e (SN} X
“,
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hydrophobicity
charge

[4.5, 1] <—
[4.2,1]¢—

[2.8, -1] €<—
K
[2.5,-1] [-0.7,0.1]

Song, Huang, Li, Jin. SurfPro: Functional Protein Design Based on Continuous Surface. ICML 2024.
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Protein Surface Construction

« MSMS tool
o Transform a PDB file into a point cloud =» molecule surface
: F IMGT
o Each vertex contains phygir:)]chemical
» 3D coordinates classes
» [hydrophobicity, charge]
L
hydrophobicity The hydrophobicity level of a I: 4.5 V:4.2 L: 3.8 F.2.8 C:2.5
residue, the higher the M:19 A:1.8 W:-09 G:-04 T.-0.7
hydrophobicity, the more S:-0.8 Y:-1.3 P:-1.6 H:-3.2 N:-35
hydrophobic the residue D:-35 Q:-35 E:-35 K:-3.9 R:-4.5
charge The charge value of a residue R:1 K: 1 D: -1 E:-1 H:0.1

Others: 0



Surface Construction

» Surface smoothing =» Compression using octree
o Gaussian kernel smoothing — higher expressiveness

, K (X, Xj)X;
qo Y g

Sone. Huane Li Jin SurfPro: Functional Protein Desion Based on Continuous Surface ICMI., 2024



Hierarchical Encoder: Local Perspective Modelling

* K-nearest equivariant graph convolutional layers

o Local Message i
m;; = SiLU hf;hl-; X; —xf i
T - T
M ZkeN(x)eXp(WlmZR_l_b) [ gate ]«C,lfl‘—?
mit = wj; *my; N (1)
Uféj ﬁ >mi;r1
o Vertex feature representation Softmax [« m;;
(= N iy | SiLU(¢.) |
JEN (x;) dfy
hi*' = h; + gate(c;" O™ \_ A n T T/
mi azl hl hl

Sone Huane Li Jin. SurfPro: Functional Protein Desion Based on Continuous Su face ICMI. 2024



Hierarchical Encoder: Global Landscape Modelling

 Frame Calculation

o Point cloud X — PCA — three principle componen
* Map a 3D molecule into the 8 coordinate systems
F(X') = {([a1vq, aav,, a3vs], t)|a; € {—1, +1}}
» Average the representations across 8 frames
= Equal to any translation + Rotation operation theoretic

» Global Landscape Modeling - MHA

» Autoregressive decoder
o Maximum likelihood optimization
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Sone. Huane Li Jin. SurfPro: Functional Protein Desion Based on Continuous Surface. ICMI1, 2024




SurfPro generates more successful binders
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« Six target proteins

o Three are used as supervised cases; three are used as zero-shot

CaSes Success Rate
InsulinR PDGFR TGFb IL7Ra TrkA Average

H ProteinMPNN PiFold m LM-DESIGN ® SurfPro M SurfPro-Pretrain

Sone. Huane Li Jin SurfPro: Functional Protein Desion Based on Continuous Surface ICMI., 2024
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Highlights of SurfPro4®

* Designing proteins based on

o surface geometry
o chemical property on the surface

 Effective in Binder-design, inverse-folding, and enzyme
design tasks

Sone. Huane Li Jin. SurfPro: Functional Protein Desion Based on Continuous Surface. ICMI1, 2024



Protein Design Approaches

e Sequence-based Generation

 Structure-based Generation
o Secondary structure-based
o Inverse Folding
o Surface geometry

>+ Sequence-Structure Co-design
o Protein monomer
o Protein complex

47



Enzyme

 biological catalyst to accelerate chemical reactions
o Enzymes reduce a reaction’s activation energy

(a) Without enzyme (b) With enzyme
oe oo 0 ctase
lactose glucose + galactose ——

activation energy

} glucose + galactose
without enzyme

| TP 4 4 e — } activation energy
l net energy released — e with enzyme

from splitting of } net energy released
J lactose

49



Motivation 1. How to design desired enzymes?

* Functional Important Sites (Motif)
o Active sites — Binding to substrates

Partial Completed
sequence sequence
LEAF LEAF KEM

KEM
>Neura| networ<

W %
Partial Completed
structure structure

Scaffoldinoe protein functional sites usine deep learnine. Waneo et al. Science 2022.



Motivation 2. How to design desired enzymes?

Enzyme classification tree indicates enzymatic reaction type
(a)

MUltﬂingual (b) Protein Famlly Tags Generated Protein
Language Tags How's it going 7 Translation [ alcohol | B
[Portuguese} + > dehydrogenasg | >
— Multilingual ( pinosylvin 200
Spanish i —~ » EnzyGen - Y-
_Sp j Translation [ synthase Y Free
[ German [ Model ( carbonic | 5 Zring:
> anhydrase | ‘
© 1 N
Oxidoreductases o alcohol
dehydro-
ECc > 2 Transferases genase
Tree |
> 7 Translocases Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by

Functionally Important Sites and Small-Molecule Substrates. ICML 2024.



Motivation 3. How to design desired enzymes?

» Substrate Specificity:

ENZYme

Different enzymes binding
to specific substrates to
speedup enzymatic
reactions

substralte

4




EnzyGen Model — NAEL backbone

Linear + Softmax

'NAEL )

[ Neighborhood Equivariant Sub-layer ]

Global Attention Sublayer
(MHA + FFN)

SRS
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[M]'K D, [M][M] ! :m2 T3, e YL Ty

“ == = = I
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Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. >3

» Controllable Design
o Functional Sites
o Enzyme family category



Neighborhood Attentive Equivariant Layer
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Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. >4



EnzyGen Learning

A - E B R ] bE o | Training Objective

=L J ::fl ________ 1 _N :1_ _N; Interaction Prediction . .
. A T o Predict whole protein
Linear + Softmax
sequence
/NAEL \ (Substrate Representation .
[Neighborhood Equivariant Sub-layer] O Pl’edICt WhOle S’[I’UC’[U re
o | "7|_Neighborhood o Predict enzyme-substrate
[ Global Attention Sublayer ] Equivariant Layer b d
9 (I\fl}-lA+ FFN) P INaing
A—K-D --- F—E o

substrate
1.1.1.1 alcohol dehydrogenase L1 L2 3 LN-1 LN

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. 2>



Neighborhood Attentive Equivariant Layer (NAEL)

'Neighborhood Equivariant Layer
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Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024.




Functional Site Discovery

mining common sites within one family

—(O—O—W—@— L —M—
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Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. >7



EnzyBench Dataset

 Extracted from BRENDA

o 8422 fourth-level enzyme classes (enzymatic reaction types)

* Selected PDB entries: 101974

o 3157 fourth-level enzyme classes
o discover functional sites for each class
o Merging into third-level categories: 256

o 30 largest categories
= Split 50 for validation & 50 for testing

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. >8



EnzyGen generates enzymes with higher function scores

EnzyGen achieves higher enzyme-substrate interaction score
in 20 out of 30 categories

1
ESP Score
0.9
0.8
0.7
0.6
0.4
Peroxidases Pentosyltransferases Phosphoric-diester Hydro-lyases Average
hydrolases

B PROTSEED RFDiffusion+IF ESM2+EGNN M EnzyGen
Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. >3



EnzyGen generates enzymes with more stable structures

Average pLDDT across 30 categories is higher than suggested
stable folding threshold - 80

100
95 pLDDT
90
85
80
. i _ i i
70
Peroxidases Pentosyltransferases Phosphoric-diester Hydro-lyases Average
~ hydrolases
B PROTSEED RFDiffusion+IF ESM2+EGNN B EnzyGen

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. o0



EnzyGen designs "good” enzymes in zero-

Shikimate kinase

(ATP:shikimate 3-phosphotransferase) (substrate paraoxon)

Arylesterase



Highlights of EnzyGen
A unified model for 3k enzyme families

Guided Generation
o Functional Important Sites, automatically mined from PDB
o Enzymy category tags (BRENDA)

Sequence and Structure Co-design
o Neighborhood Attentive Equivariant Layer

Trained takes substrate binding into consideration

63



Protein-Protein Complex Generation

« Seqguence-structure co-design in iterative refinement
procedure

64



PPDiff

(a) PPDiff (b) target-protein

4 SSINC Network I PDB mini-binder
complex design

[ Causal Attention Layer ] X L causal , , . .
A Protein-Protein | Finetuning| antigen-antibody
> :
— Complex complex design
[kNN Equivariant Graph Layer]
XLI ......
[ Self-Attention Layer ] X Lattn
j Pretraining

S —

PPDiff
« e « e <«

Noise f B 1 Diffusion Process

Diffusing in hybrid space « SSINC Network

o Discrete sequence diffusion o Interleaving network (NAEL)
o Continuous structure diffusion o Casual attention layers

Song, Li, Li, Min. PPDiff: Diffusing in Hybrid Sequence-Structure Space for Protein-Protein Complex Design. ICML 2025. 6>



PP

Diff generates novel binders with higher success rate

PPDiff achieves 50% success rate across diverse protein

ta

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

rgets

Top-1 results on general protein-protein complex design

ipTM pLDDT (/100) Success Rate Novelty

Senc+ProteinMPNN InterleavingDiff SSINC Network B PPDiff
Song, Li, Li, Min. PPDiff: Diffusing in Hybrid Sequence-Structure Space for Protein-Protein Complex Design. ICML 2025.
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PPDiff generates novel antibodies with higher success rate

PPDiff achieves 16.89% success rate on antigen-antbody
complex design

0.9

Antibody Design Performance

0.8

0.7

0.6
0.
0.
0.
0.
0.
0

ipTM pLDDT (/100)  Success Rate H1 Novelty H2 Novelty H3 Novelty

]

>

w

N

[N

Senc+ProteinMPNN InterleavingDiff SSINC Network ™ PPDiff

Song, Li, Li, Min. PPDiff: Diffusing in Hybrid Sequence-Structure Space for Protein-Protein Complex Design. ICML 2025. 67



PPDiff designs high-affinity binders/antibody
across diverse target proteins

influenza A H3 haemagglutinin

ipTM=0.89, pLDDT=90.12, ipTM=0.85, pLDDT=87.21, IpTM=0.83, pLDDT=90.80,
pPTM=0.88, Novelty=77% pPTM=0.87, Novelty=92% pTM=0.87, CDRH3 novelty=55%

Song, Li, Li, Min. PPDiff: Diffusing in Hybrid Sequence-Structure Space for Protein-Protein Complex Design. ICML 2025. 08



Highlights of PPDIff

A unified model for protein complex sequence-structure co-
design

« Diffusion in hybrid space
o Discrete sequence diffusion
o Continuous structure diffusion

* Performs well in wide applications
o Generation protein-protein complex design
o Target protein-mini binder complex design
o Antigen-antibody complex design

69



Protein Design Approaches

e Sequence-based Generation

 Structure-based Generation
o Secondary structure-based
o Inverse Folding
o Surface geometry

« Sequence-structure Co-design
o Protein monomer
o Protein complex

70



Takeaway of Protein Design
Problem formulation: Guiding information is important
o fitness scores, chemical properties, tags, motifs

Modelling Structure/Geometry is critical for molecules
o Keeping SE(3) equivariance implicitly augments training data

Modeling the mutual constraints between sequence and
structure is useful

Interaction between protein-ligand complex

Diffusion method to further iteratively refine: discrete+continuous



Commonality and Distinction in Generating
Language and Molecules

Sequence | BERT, GPT ESM, ProGen
o Tree-LSTM MPNN
Distribution | Structure
3D EGNN, EnzyGen
Geomet [ICML24], SurfPro
i [ICML24], PPDift
g&i%r:& C-VAE ISEMPro [ICML 23]
Generation
Editing MARS [ICLR21],

CGMH[AAAI19]

MolEdit3D



Protein
EnzyGen SurfPro

IsEMPro LSSAMP
PPDitf

Small Molecule

MARS MolEdit3D
RLHEX
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