From Words to .
Harnessing Generative Al for
Breakthroughs in Language and
Molecular Design

Ler LI
N Carnegie Mellon University
7n Language Technologies Institute



February 2020

ARAI-20 / 1AAI-20 / ERAI-20
- Conference Program

New York Hilton Midtown

v .
New York, New York
! February 7-12, 2020 o —

MIT Al powered Drug Discovery
and Manufacturing Conference.
Boston, 2020.2



Large Language Models drive the Productivity
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Generative Al powers Imagination
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generated by DALL-E with prompt “generate an image using generative Al for protein design”
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Can GenAl design molecules with desired functions?
e Medicine
e \/accine
e Enzyme - Biocatalysts
e Biosensors (e.g. GFP)

e New materials




Commonality and Distinction in Language

and Molecule Generation
e Modeling
o Sequence of Discrete Tokens

o Discrete Structures
o Geometry (Unigue for molecules)

e [raining: direct, contrastive, PPO

e (Generation

o Score-conditional Generation
o lterative Editing



Discrete Sequences of Tokens
Remdesivir:  C,5H;cN-OgP
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From Human Language to Protein Sequence

e Proteins are building blocks of life

o Important biological functions

Histidine Lysine Serine
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Protein Sequences are much Longer than Text!
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Modeling Distribution of Sequences
o BERT e ESM, ESM-2

e GPT e Pro(Gen
%\!’S’P Mask LM Ma% LM ‘\'.
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Protein Language Model 1: Mask LM
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Glycine

|soleucine

Glutamic acid
Glutamine

Cysteine

¢ Using raw protein
seguences for pre-
training
o Training loss: predicting
masked residues

e ESM [Meler et al 2021]
and ESM-2 [Lin et al
2023]
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Protein Language Model 2: Casual LM
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Protein Glycine ~ Valine Glutamine
Isoleucine  Glutamic acid ~ Cysteine

family

e Using raw protein sequences
and their category tags for
pre-training

o training loss: predicting next
residue

e ProGen [Madani et al 2023]
and ProGen?2 [Nijkamp et al
2023]

e Protein Tag Is insufficient!



Discrete Structure

e Trees e 2D Molecule Graph
o Dependency tree N
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John hit the ball. hj
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Graph Neural Network
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X3 Neural network
# of updates e.g., f(x) = ReLU(Wx+Db)
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Fig.1: The update function (or called transition, propagation, message passing, and
convolution) in GNNs. On a molecular graph, the GNN updates each atom vector

with its neighboring atom vectors non-linear transformed by neural network.
The molecular vector is obtained by summing (or mean) the atom vectors.

[Tsubaki et al, 2018.] 14



Graph of Fragments
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Fig.2: The update function based on radius-based subgraphs, i.e., molecular
fingerprints. Each fingerprint is initialized with a random vector. The following
procedure is the same as that of basic GNN.

[Tsubaki et al, 2018.]
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Iterative Editing based Molecule Generation

e Adding fragment

jethonel ”@\@H@F
e Deleting a fragment

MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. Xie, Shi, Zhou, Yang, Zhang, Yu, Li. ICLR 2021. 1o



Geometry of Molecule

e Matrix of 3D coordinates

e Matrix of angles
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Modelling Geometry

e Equivariant Graph Neural Network (EGNN)

Equivariance:

fx)+z=f(x+2)
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it =xl+C ) (xi —x) ¢ (my)
JF0
m,; — Zmij
JF#e
héﬂ = ¢n (hf;, mz')

[Satorres et al, 2021.]
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Molecular Design Problems

Small-molecule drug design
o bind to a protein target
o with desired properties: toxicity, synthesizability, drug likeness (QED), ...

Protein design:

o Enzyme

o Protein Binder
o Biosensor: GFP
o Antibody

RNA design
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Protein Design Approaches
ﬁ> e Sequence-based Generation

e Structure-based Generation
o Secondary structure-based
o Inverse Folding
o Surface geometry

e Sequence-Structure Co-design
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Guiding Protein Generation with Function Fitness

e Fitness functions P(S|x) can be trained using lab data

o e.g. Green Fluorescent Protein (avGFP) [Sakisyan et al 20106]
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Brooks et al. Conditioning by adaptive sampling for robust design. ICML 2019.
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Pre-training Protein Generative Model
max Pgo(x|S) < Pg(x)P(S|x)
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o But iHe generated proteins will have very low fithess score!



ISEMPro: Intuition

L. high fitness
protem prob.

Pg(x]5)

raw protein prob.
Pg(x)

variational
protein prob.

Qg (x)

Zhenaqgiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Design. ICML 2023.



ISEMPro Method

e |ntuition:

o Learning a proposal Q4 (x) to approximate

distribution of "good” proteins Pg(x|S)
¢* = argmax —Dg (Pg(x|S)| Qg (X)) 1

¢

e Model architecture:
o two VAEsS
o Augmented with MRF features

o Expectation-Maximization with
Importance Sampling (self-learning)

Markov Random Fields l
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Zhenqiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Designh. ICML 2023.



MRF: Learning the Combinatorial Structures

of Amino Acids
® [hese structure constraints are the results of evolutionary
process under nature selection
o Favorable amino-acid combinations
o Guiding model toward higher fitness landscape

Markov Random Field
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Zhenqiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Designh. ICML 2023.



Integrating MRF into ISsEMPro Generation

e MRFs features (I-th residue)
€j (xl) — [gl' (xi)l gil(xi) al-)) ey EiM (xi) aM)]
€ij (xi: aj-) = [gij (x;, aq), €ij (x;,a3), ..., €ij (x;, azg)]

e [ransformer decoder (autoregressive)
o First token input: latent vector (learned) Hy = Z

o Other input: combinatorial structure enhanced feature vector
Hy =emb(xi_1) + W= &_1(x;_1),1<i<M

Zhenqiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Designh. ICML 2023.



ISEM-Pro generates higher-fitness proteins

Average Fitness on Eight Protein Datasets
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Zhenqiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Designh. ICML 2023.



ISEM-Pro generates more diverse proteins

Average Diversity on Eight Protein Datasets
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Zhenqiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Designh. ICML 2023.



ISEM-Pro achieves the highest average novelty score

Average Novelty Score on Eight Protein Dataset
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Zhenqiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Designh. ICML 2023.



Green Fluorescent Protein designed by IsEMPro
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Highlights of ISEM-Pro

e Using importance sampling inside the EM is efficient to
generate functional proteins

e [he combinatorial enhanced latent generative model boosts
diverse and novel protein sequences

® [he self-learning process helps to find proteins with higher
fitness scores

Zhenqiao Song, Lei Li. Importance Weighted Expectation-Maximization for Protein Sequence Designh. ICML 2023.



Protein Design Approaches
e Sequence-based Generation

e Structure-based Generation
o Secondary structure-based
o Inverse Folding
:> o Surface geometry

e Sequence-Structure Co-design
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Protein Surface
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Surface-based Protein Design

e |ntuition: fill in the content

given an outline

e Complementary shapes

Poorly placed charges,
polarity or hydrophobicity

orevents molecule binding

38



2 SurfPro Method

Protein Sequence

hydrophobicit
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Song, Huang, Li, Jin. SurfPro: Functional Protein Design Based on Continuous Surface. ICML 2024. 3°



Protein Surface Construction

e MSMS tool
o Transform a PDB file into a point cloud =2 molecule surface
: From IMGT
o Each vertex contains . .
. 3D dinat physicochemical
coorainates classes

= [hydrophobicity, charge]
N e

hydrophobicity The hydrophobicity level of a I: 4.5 V:4.2 L: 3.8 F.2.8 C:25
residue, the higher the M:1.9 A:1.8 W:-09 G:-04 T.-0.7
hydrophobicity, the more S:-0.8 Y:-1.3 P:-1.6 H:-3.2 N:-3.5
hydrophobic the residue D:-35 Q:-35 E:-35 K:-3.9 R:-4.5
charge The charge value of a residue R:1 K:1 D:-1 E:-1 H:0.1

Others: 0



Surface Construction

e Surface smoothing
o Gaussian kernel smoothing — higher expressiveness

K(Xi, X;)X; _(x_y)Z
X; = z > S ])_l , k(x,y)=e T

W Yo
' 1

Soneg. Huane. Li. Jin. SurfPro: Functional Protein Desien ased on Continuous Surface. ICML 2024.



Surface Construction

e Surface compression

o Octree-based downsampling
= Convert the surface into small cubes
» Fach cube is recursively divided into 8 octants — minimum points
N=V-r

42



Hierarchical Encoder: Local Perspective Modelling

o K-nearest equivariant graph convolutional layers
o Local Message bt

m;; = SiLU ht | 1x! — x! A
I
A 2 keN(x) exp(Wy'mjy, + bg) [ gate ](-6?14—?

m%}l_l — Wll] * ml] N(Z)
ey
o Vertex feature representation { Softmax }7 mﬁ
(1 z i1 | SiLU(g.) |
JEN(x;) d/Y
R+ = h! 4 gate(cHt )@ \ 2 Ziq T T/
‘135, a:l hl hl

Song. Huane. Li. Jin. SurfPro: Functional Protein Desien Based on Continuous Su face. ICML 2024.



Hierarchical Encoder: Global Landscape Modelling

e Frame Calculation

o Point cloud X — PCA — three principle componen
* Map a 3D molecule into the 8 coordinate systems
F(X) = {([a1vy, axvy, azvs], t)|a; € {—1,+1}}
= Average the representations across 8 frames
» Equal to any translation + Rotation operation theoreti

e Global Landscape Modeling - MHA

e Autoregressive decoder
o Maximum likelihood optimization
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Song. Huane. Li. Jin. SurfPro: Functional Protein Desien Based on Continuous Surface. ICML 2024.



SurfPro generates more successful binders

e Six target proteins
o Three are used as supervised cases; three are used as zero-shot

CaSES Success Rate
45
40
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1° i 1l i
* w AN W I
InsulinR PDGFR TGFb IL7Ra TrkA Average

B ProteinMPNN PiFold m LM-DESIGN m SurfPro MW SurfPro-Pretrain

Song. Huane. Li. Jin. SurfPro: Functional Protein Desien Based on Continuous Surface. ICML 2024. 46
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Highlights of SurfPro 2

e Designing proteins based on
o surface geometry
o chemical property on the surface

e Effective in Binder-design, inverse-folding, and enzyme
design tasks

Song. Huane. Li. Jin. SurfPro: Functional Protein Desien Based on Continuous Surface. ICML 2024. >0



Protein Design Approaches
e Sequence-based Generation

e Structure-based Generation
o Secondary structure-based
o Inverse Folding
o Surface geometry

Do Sequence-Structure Co-design

51



Enzyme

¢ pbiological catalyst to accelerate chemical reactions
o Enzymes reduce a reaction’s activation energy

(a) Without enzyme (b) With enzyme
oe e ctase
lactose glucose + galactose .

@

lactose

L™

p &

glucose + galactose

activation energy
without enzyme

———————————————————————————————————— } activation energy
------------------------------------------------------ with enzyme

} net energy released

from splitting of
lactose

} net energy released
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Motivation 1: How to design desired enzymes?

e Functional Important Sites (Motif)
o Active sites — Binding to sulbstrates

Partial Completed
sequence sequence
LEAF LEAF

>\leural network<

4 / e

Partial Completed
structure structure

Scaffoldineg protein functional sites using deep learnine. Wane et al, Science 2022.



Motivation 2: How to design desired enzymes?

Enzyme classification tree indicates enzymatic reaction type

(a)

Language Tags How's it going ?

ﬂ’ortuguese]-

| Spanish >

| German |-

(c)

EC
Tree

\4

Multilingual

Translation
Model

\ 4

\

Oxidoreductases

—> 2 Transferases

7 Translocases

Multilingual (B protein Family Tags Generated Protein
Translation (" alcohol ) E
dehydrogenasd™] >
( pinosylvin 220
synthase > EnzyGen 4> § i
carbonic 1 L &,
anhydrase |
1.1.1.1
alcohol
dehydro-
genase

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by
Functionally Important Sites and Small-Molecule Substrates. ICML 2024.



Motivation 3: How to design desired enzymes?

e Substrate Specificity:

enzyme

Different enzymes binding
to specific substrates to
speedup enzymatic
reactions

substrate

4




EnzyGen Model — NAEL backbone

Linear + Softmax

("NAEL )
[ Neighborhood Equivariant Sub-layer ]

L.x
Global Attention Sublayer
(MHA + FFN)
\_ /
= == ===
MI'K Dy MIM] 20 1y gt 2 0]

S ——— ----,

A—K-D -.- F—E

1.1.1.1 alcohol dehydrogenase L1 L2 L3 ***LN-1 LN

e Controllable Design
o Functional Sites
o Enzyme family category

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. >/



Neighborhood Attentive Equivariant Layer
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Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. I[CML 2024. >8



EnzyGen Learning

I— - TTTTT == S e s ) e ® Tal " "
W R e e |® Training Objective
. A T o Predict whole protein
Linear + Softmax
[NAEL \ [Substrate Representation Seq uence
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o . "7| _Neighborhood o Predict enzyme-substrate
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1.1.1.1 alcohol dehydrogenase L1 L2 T3 LN-1 LN

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. >9



Neighborhood Attentive Equivariant Layer (

'Neighborhood Equivariant Layer "

/ Neighborhood N\ Rl — . T
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Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. I[CML 2024.



Functional Site Discovery

MiNning common sites W|th|n one family

—OHOHIH@ Ot
— @O F O v+
—@HE M@ v
—©-HO+HR-H@+HE M
— OO @R -

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functlonally Important Sites and Small Molecule Substrates. ICML 2024. °1
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EnzyBench Dataset

¢ Extracted from BRENDA
o 8422 fourth-level enzyme classes (enzymatic reaction types)

e Selected PDB entries: 101974

o 3157 fourth-level enzyme classes
o discover functional sites for each class
o Merging into third-level categories: 256

o 30 largest categories
= Split 50 for validation & 50 for testing

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. 62



EnzyGen generates enzymes with higher function scores

EnzyGen achieves higher enzyme-substrate interaction score
INn 20 out of 30 categories

1
ESP Score
0.9
0.8
0.7
0.6
0.4
Peroxidases Pentosyltransferases Phosphoric-diester Hydro-lyases Average
hydrolases

B PROTSEED RFDiffusion+IF ESM2+EGNN ® EnzyGen
Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. I[CML 2024. 63



EnzyGen generates enzymes with more stable structures

Average pLDDT across 30 categories Is higher than suggestead
stable folding threshold - 80

100
95 pLDDT
90
85
80
. i _ i i
70
Peroxidases Pentosyltransferases Phosphoric-diester Hydro-lyases Average
. ~ hydrolases
B PROTSEED RFDiffusion+IF ESM2+EGNN H EnzyGen

Song, Zhao, Shi, Jin, Yang, Li. Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates. ICML 2024. **



EnzyGen designs "good” enzymes in zero-
shot categories_
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Highlights of EnzyGen
e A unified model for 3k enzyme families

e Guided Generation
o Functional Important Sites, automatically mined from PDB
o Enzymy category tags (BRENDA)

e Seguence and Structure Co-design
o Neighborhood Attentive Equivariant Layer

e [rained takes substrate binding into consideration

67



Commonality and Distinction in Generating
Language and Molecules

Sequence | BERT, GPT ESM, ProGen
22 Tree-LSTM MPNN
Distribution | Structure
3D EGNN, EnzyGen
Geometr [ICML24], SurfPro
g [ICML24]
S’Si%ree(; C-VAE ISEMPro [ICML 23]
Generation
Editing MARS [ICLR21],

CGMH[AAAI19]

MolEdit3D



Takeaway of Molecular Design

e Problem formulation: Guiding information is important
o fitness scores, chemical properties, tags, motifs

e Modeling Structure/Geometry is critical for molecules
o Keeping SE(3) equivariance implicitly augments training data

e Modeling the mutual constraints between sequence and
structure is useful

* |nteraction between protein-ligand complex
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Molecule Design at CMU Li lab
’ https://leililab.github.io/ :

Protein Small Molecule

EnzyGen SurfPro || MARS MolEdit3D
IsEMPro LSSAMP| RLHEX
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