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Cross Language Barrier with Machme Translatlon

The latest version will launch in just a few rﬁonths
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* Transformer as commonly used backbone
architecture for MT.

* 50 - 100m parameters

* Huge computation: 670 GPU hours for
training [Vaswani et al 2017].
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Training NMT gets more expensive!
» Attention GPU is all you need

Size |Total Time |[Train Once|Infer
(M) | (GPU hr) | (GPU hr) |(ms)
60 38k 384

Carbon Footprint
(car year




Affordable and Green MT

* Training NMT models are computationally expensive.
* How to speed up MT training, and inference?

* How to reduce energy consumptions during M T
training?



Outline
1. Algorithm: Learning Compact Vocabulary for NMT

— Small vocabulary with improved performance at 100x faster!

2. Model: Parallel Generation
— Translate at equal or better quality with 10x speedup!

3. Computing: Hardware Acceleration for training and
inference

— Faster than Tensorflow & Pytorch at 14x speedup!




Vocabulary Learning via
Optimal Transport
for Neural Machine Translation

jOint W/ Jingjing Xu'  Hao Zhou!  Chun Gan' Zaixiang Zheng'



Vocabulary is Fundamental and Important

Sentiment Ana Dialog Summarization
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Which Vocabulary is Better?

Word level

The most eager s Oregon which 1s enlisting 5,000 drivers in the country
Char level

T h e m O S t e a g e r 1 S O r e g

Sub-word level

The most e ager is O reg on which 1s en listing 5,000 drivers 1in the country

Sub-word vocabulary is the dominant choice

* With normal-size data



Why is Sub-word (BPE) superior? Theoretically

 Information theory:

— Compress the message into compact representation

— fewest bits to represent both sentence and vocabulary
— Char-level vocab ==> text sequence will be long

— Word-level vocab ==> vocab will be large and still OOV

* Entropy:

— how much information in each token

e Intuition:

— Reduced entropy (bits-per-char) ==> Better Vocab
— Even better vocab?

10



Information-theoretic Vocabulary Evaluation

* Normalized Entropy
— Information-per-char (IPC)

H (V) = — ll Z P(i)log P(i)

UViiev
— It represents Semantic-information-per-char
- Smaller IPC is better. Easy to differentiate (therefore easy to generate)
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Which vocabulary iIs better?

Sub-word level vocabulary with 1K tokens (BPE-1K)

1 st mg S5 0 00 d =1 ver s  in

Sub-word level vocabulary with 10K tokens (BPE-10K)

The most e ager is O reg on which listin 5,000 dr vers in the country
i

Sub-word level vocabulary with 30K tokens (BPE-30K)

The most e ager is O reg on which is en listing 5,000 drivers in the country

From the perspective of size, BPE-1K seems to be better
but longer sequence

* With normal-size data
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The

Which Vocabulary is Better?

Sub-word level vocabulary with 1K tokens (BPE-1K)

most € ag er is O reg on which 1s en li st ing 5 0 00 d r ver s In the coun Tr

Sub-word level vocabulary with 10K tokens (BPE-10K)

= 5,000 dr vers in the
i

Sub-word level vocabulary with 30K tokens (BPE-30K)

O reg on which is en listing 5,000 drivers

From the perspective of entropy, BPE-30K seems to be better

* With normal-size data
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Evaluating Vocabulary Quality is Expensive

BPE 1K S BPE 10K Sl BPE 30K BPE 1K S BPE 10K S BPE 30K

1PC Size

Full training and testing are required to find the optimal vocabulary!
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Trading IPC with Size
* Value: IPC @

. -
e Cost: size é

e Marginal utility of information for Vocabulary (MUYV)

— Negative gradients of IPC to size

— How many value does each unit-of-cost bring?

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.15



MUYV is good indicator for MT performance
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Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2029.



MUYV Indicates MT Performance

e MUYV and BLEU are correlated on two-thirds of tasks
e A good coarse-grained evaluation metric!
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Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural I{Xachine Translation. ACL 2021.



Maximizing Marginal Utility of Vocab
» Goal: finding the optimal vocabulary

Finding the optimal

vocabulary Maximizing MUV

* Naive solution:
— Exhaustive Search for vocabulary with max MUI

* How to search over a huge discrete space?

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021 .



Problem Reduction
» Best BLEU ==> Max MUV ==> Optimal Transport

Min cost to Transport soldiers from bases to frontlines

19



Optimal Transport

Easy solution: split the

task with proportions
120:90:90 = 4:3:3

20



Optimal Transport

Easy solution: split the

task with proportions
120:90:90 = 4:3:3

21



Vocabulary building as Transportation

* Adding one new token means:
— Transport character frequency to token frequency

—abcdeabdcef: 2a2b

—abcdeabdcef: OaOband?2ab

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.



VOLT Formulation

Transport chars to tokens

3

........
.........
.
*
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VOLT Formulation

Not all tokens can get chars

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2024 .



VOLT Formulation

Not all tokens can get chars

fa a(60)
"’
[ ]
L
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* ..
0. o
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" .0
] *

S a,
‘. ...........

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.



VOLT Formulation

Not all tokens can get chars
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Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2029.



Each Transportation Defines a Vocabulary

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021



Reducing MUV Optimization to OT

* The vocabulary with the maximum MUV

— Maximum gap between |IPC of a vocabulary (with size t) and that
of a smaller vocabulary (with size <t)

—max — (H(V,,) — H(V))

* Intractable, instead to maximize upper-bound of gap
(H(Vt+1) o H(Vt)

. ==> max(max H(V,, ;) — max H(V)))

* Finding max H(Vt) ==> Optimal Transport

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021 .



Optimization

* Find the transportation matrix (=vocab) with lowest cost (-MUV)

Problem
Constraints min C (P)
all P
\vd ] e : b’ : Z a1y &
j €1a,b,c} 5 = Cost Function
Le{ab,bc,a}
Vi€ {ab, bc,al, Pij - P, <€ C(P)=-H(P) + | Z | PiJDi,j
: : JE{a,b,c},
j€{a,b,c} te{ab,bc,a}

Transportation matrix P Cost matrix D

cat at tea cat at tea
. 20 10 0 3 7 7 7
C 20 0 0 C 7 - =
0 0 0
e e o0 o 1
20 10 0 7 7 -
t t

e Sinkhorn AlgOI’ithm [Gabriel Peyré et. al]

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.




VOLT finds better vocabulary on Bilingual MT

WMT De-En
Transformer architecture

BLEU (+) Size (K) (-)
B BPE-30K (Widely-adopted) B VOLT

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021, 3°




VOLT finds better vocabulary on Bilingual MT

WMT De-En

BLEU (+) Size (K) (-)
B BPE-30K (Widely-adopted) B VOLT

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. 31



VOLT finds better vocabulary on Bilingual MT

Transformer architecture

WMT De-En TED Es-En TED PTbr-En TED Fr-En
' ii i .
BLEU (+) Size (K) (-) BLEU (+) Size (K) (-) BLEU (+) Size (K) (- BLEU (+) Size (K) (-)
B BPE-30K (Widely-adopted) B VOLT B BPE-30K (Widely-adopted) W VOLT B BPE-30K (Widely-adopted) I VOLT M BPE-30K (Widely-adopted) M VOLT
TED Ru-En TED He-En TED Ar-En TED It-En
BLEU (+ Size (K) (-) BLEU ( +) Size (K) (-) BLEU (+) Size (K) (-)
B BPE-30K (Wldely adopted) B VOLT B BPE-30K (Widely-adopted) B VOLT B BPE-30K (Widely-adopted) W VOLT B BPE-30K (Widely-adopted) W VOLT

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.
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VOLT Finds Better Vocabulary on Multilingual MT

Transformer architecture

38
BLEU
33.25
28.5
. ‘ | ‘ ‘ ‘ ‘
Es Pt-br Fr Ru He Ar It Ro De Vi Pt Fa Sr Hr
B BPE-60K (Widely-adopted) . VOLT

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. 33



VOLT Finds Better Vocabulary on Multilingual MT

Transformer architecture

38 BLEU
“ || i ‘l ‘| II II
Pt

33.25
28.5

23.75

|| i ‘l II |‘ || ‘l ‘l ||
Fa Sr Hr

Es Pt-br Fr Ru He Ar It Ro De Vi
B BPE-60K (Widely-adopted) B VOLT

19

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021, 3



VOLT Generalizes Well to Other Architectures

BLEU Vocabulary Size (K)

30 40
27.5 30
25 20

22.5 10 I I
20 0

Transformer-big CNN Seq2Seq Transformer-big CNN Seq2Seq

B BPE-30K (Widely-adopted) B VOLT B BPE-30K (Widely-adopted) B VOLT

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. 3°



VOLT: A Green Vocabulary Learning Solution

BPE-Search 384 GPU
Carbon hours
Emission
OLT_SearCh ()5 CPU hOU.I‘ S
BPE-Search
BLEU

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. 3°



VOLT: A Green Vocabulary Learning Solution

BPE-Search 384 GPU

Carbon hours

Emission
OLT-search-eval 0.5 Cﬁpmh()ur S

How to reduce this?

BPE-Search

BLEU
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Glancing Transformer
for Non-autoregressive
Neural Machine Translation

Joint w/ Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Q1u, Weinan Zhang, Yong Yu
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Transformer is Autoregressive

» Autoregressive models generate sentences sequentially

Bt — %

a lot of trees

* The conditional probabillity is factorized successively

1
p(Y1X;0) = | | p(wely<s, X 6)
t=1

* Human-style translation is slow. Machine does not have to mimic human!

39



Wild idea: Parallel Generation?

* Non-autoregressive models generate all the tokens in parallel

[ S
RS W == a2 lot of trees

» (Conditional independence assumption

p(Y|X;0) HP Y| X5 0)

40



Model architecture
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') !
80 O
: 24,
=]~
2|
&-{ ][«
| =

hy

Non-autoregressive decoder

Autoregressive decoder

41

Gu et al, NAT, ICLR 2018



Whyv Non-autoreagressive?

1. Faster decoding in non-autoregressive translation (NAT)

v v v

a lot of trees

2. Capturing bidirectional context for generation

a lot of trees

42



33

30

27

BLEU

24

21

18

* One input -> multiple target

a lot of trees
/
EZWN

\a great many trees

» Inconsistency problem in parallel generation

Challenge: Inferior Quality of NAT

" great

.I II lot of

__many )
WMT14 EN-DE WMT14 DE-EN 1R 28 = a|great of ltrees

B NAT-base B Transformer

43



Key Intuition: Word interdependenc

* Learning word interdependency In the target sentence
IS crucial for generating fluent sentences

* Non-autoregressive models lack a effective way of
dependency learning

44



an apple the car
Vi mg 2= ] V3 = Yo =~y )5

-
S L1

| | | |
- ))’1 )Y2 Y3 )y4
= |
*c-é dll dpplic

emm Apfel mm Auto

Learning Word Interdependenc

Autoregressive models

» predict the next tokens
conditioned on the
Input target tokens
(left-to-right)

45



Learning Word Interdependenc

apple n

=y

lterative-NAT

101

» predict the randomly
Y1 | IMASK] [MASK]} 4 Vs
. masked tokens based

on unmasked tokens
Encoder \

rely on multiple decoding iterations,
therefore does not gain speedup!

attent
Random

ein Apfel 1m Auto

Lee et al. Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement. EMNLP 2018.
Ghazvininejad et al. Mask-Predict: Parallel Decoding of Conditional Masked Language Models. EMNLP 2019. 46



New Idea for Dependency learnincg

an apple 1n the car
W ) V3 V4 Vs

Ly = —logp(Y|X;0)

.- Lack explicit target word
g interdependency learning

x3 x4 -----

ein Apfel im  Auto

attention

* Glancing Language Model (GLM)
* A gradual training method

* Learning word interdependency for single-pass parallel generation

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.
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Glancing Language Model

Glancing

Encoder )
Sampling

Optimization

\ ] \ ] \
Y Y
Encoding The first decoding The second decoding

J

only one-pass decoding in inference
\

* Perform two decoding during training —
1. Glancing Sampling (the first decoding):
- Based on the prediction, replace part of the decoder inputs with
sampled target words
2. Optimization (the second decoding):
- Learn to predict the remaining words with the replaced decoder inputs

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.
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Glancing: Learning Dependency Gradually

: 1 of: Etreesg

X8 M

- Based on the prediction, replace part of the decoder
inputs with sampled target words

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.
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Glancing: Learning Dependency Gradually

attention

- Learn to predict the remaining words with the replaced decoder inputs

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.
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Glancing: Learning Dependency Gradually

a of trees More similar to the
target reference

-

=

E

sl 1 1 1 O S A
" £ H K Why by h

During training, the sampling number of target words decreases gradually.

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.
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GLAT boosts Translation Quality significantly!

+ 5 BLEU!
30 29.84
27
o 25.21
— ' 24.81
o0
24 —
21 2036 o
13
WMT14 EN-DE WMT14 DE-EN
NAT-base B GLAT

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.
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GLAT approaches Transformer quality!

33
31.02 31.27
30 29.84 »gcg
27.48
27 2639 26.55-
= 25.21
L - 24.81
@ 24 + +
21 2036 + +
18
WMT14 EN-DE WMT14 DE-EN
NAT-base GLAT B GLAT+CTC B GLAT+NPD B Transformer

* GLAT achieves high quality translation while keeping high
iInference speed-up (8x~15x)

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021. >3



GLAT in Real Competition

GLAT achieve the Top score in WMT21 En-De and De-En!
he flrst NAT system to do so!

newstest2021.de-en test set (ae-¢ newstest2021.en-de test set (en-de)

# £\ Name ¢ BLEU # £ Name & BLE
1 Anonymous submission #1276 35.0 1 h Anonymous submission #1265 31.3
2 Anonymous submission #1284 35.0 2 Anonymous submission #1303 31.3
3 Anonymous submission #1304 349 3 Anonymous submission #1291 31.3
4 Anonymous submission #1117 34.9 4 Anonymous submission #804 31.3
o Anonymous submission #1258 34.9 5 Anonymous submission #368 31.3
[ Anonymous submission #1124 34.9 6 Anonymous submission #1168 31.3
7 Anonymous submission #543 34.8 7 Anonymous submission #1251 31.2
8 Anonymous submission #963 34.8 8 Anonymous submission #986 31.2
9 Anonymous submission #861 34.7 9 Anonymous submission #1310 31.2
10 Anonymous submission #738 347 10 Anonymous submission #1243 31.2

- = . g BLEU and Chrf¥ are sacreBLEU scores. Systems in bold face are your submissi
BLEU and ChrF are sacreBLEU scores. Systems in bold face are your submissior o ) ’

oy validation errors denoted by -1.0 score,
validation errors denoted by -1.0 score.

Qian et al. The Volctrans GLAT System: Non-autoregressive Translation Meets WMT21. 2021.



GLAT is the first production NAT system!

* Already deployed online in VolcTrans and serving
English-Jdapanese

40 4

» beautyera__ beautiful moment - 2019-12-23
you're bound to love this#nature #view #heavenonearth

1 [BE - beautiful moment

35

30

25

- © S e

- — T

= 31M 20
ation BLEU Human Rating

NI ENE
Volctrans .

)
-~ N -
5 —— f*-' e

Tiktok caption trans|




LightSeq: A High Performance
Library for Transformers

Joint w/ Xiaohui Wang, Ying Xiong, Yang Wel, Xian Qian, Mingxuan Wang

and community contributors

56



Need for Hardware Acceleration

* What about Transformer computing?

— Transformers are still widely used in many sequence processing
and generation tasks.

» Large number of parameters cause the high latency In
training and inference.

» Current computation libraries are insufficient.

57



LightSeq: A high-performance libra
e Efficient

— LightSeq achieves up to 14x speedup compared with TensorFlow and
Py Torch.

e Functional

— LightSeq supports more architecture variants and different search
algorithms.

e Convenient

— LightSeq is easy to use without any code modification.
— Seemless porting from Tensorflow, Pytorch, Hugginface, Fairseq

58



Improve GPU Occupation

» LightSeq greatly reduces the proportion of kernels
other than GEMM.

Baseline LightSeq
Cast
39.7%
ToPK o GEMM
) . . (0) 0
Element-wise Sum 5 50, 87.0%
0.1% Others
2.9% HARS
e Layer Normalization
24.5%
GEMM 6.4% .
Cache Refreshing
30.1%
Others

Wang, Xiong, Wei, Wang, Li. LightSeq: A High Performance Inference Library for Transformers. NAACL 2021. >°



Speedup for Machine Translation

» LightSeq outperforms others in most cases, especially
INn large batch size.

T4 speedup on Transformer with beam search P4 speedup on Transformer with beam search
161 » TensorFlow ==+ TensorFlow
14- PyTorch 6 PyTorch
12 FasterTransformer c | FasterTransformer
LightSeq LightSeq
Q. Q.
-5 10 -
O o 4-
) )
v 8- Q
A 23
6_
4 - -
21 IR L L LI L I LLLL LT T TY

\'\, 1 \'\, 1 \% 1 \% 1 (57, 1 (51 1 \6& 1 \6D( 1 \'\f)/% ‘\’\j/% 1 \'\, 1 \'\, 1 \'\'6 ' \\’6 1 (5’7, 1 (b’), 1 \60‘ 1 \65( 1 \'\7, \\‘\7,% '

(Batch size, Seq len) (Batch size, Seq len) 60
Wanq, Xiong, Wei, Wanq, Li. LightSeq: A High Performance Inference Library for Transformers. NAACL 2021.



Faster Text Generation w/ LightSeq
 LightSeq outperforms others in most cases

6_
5_
S 4
O
)
)
o
0
3_
-------- TensorFlow
21 FasterTransformer
LightSeq
1_ ...............................................................

a, 32) a. 65‘\\31‘ 32232' 66{\\}%‘ 3’@2%' o)

(Batch size, Seq len)

Wang, Xiong, Wei, Wang, Li. LightSeq: A High Performance Inference Library for Transformers. NAACL 2021. ©1



Summary for Efficient MT

 Algorithm: VOLT

— Learning Compact Vocabulary for NMT
— Small vocabulary with improved performance at 100x faster!
— Green solution: 30mins on only one cpu.

* Model: GLAT

— Parallel Generation really works for the first time!
— Translate at equal or better quality with 10x speedup!
— Deployed In production
» Computing: LightSeq
— Hardware Acceleration for training and inference
— 14x faster than Tensorflow & Pytorch!
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Towards Green MT

 Many challenges remaining!

* Propose new metric: Best value MT
— GFlops or carbon footprint for model development

« Hardware acceleration for GLAT and other NAT?
 Low-end hardware?
» Taming the model size?

63



Thanks!

e Code:
— VOLT: https://github.com/Jin

Contact: lilei@cs.ucsb.edu

INng-NLP/VOLT

— GLAT: https://qithub.com/FLC777/GLAT

* Open Source Library

L G e ‘ec ceurST

Transformer fast training peech and Text
and inference lib

(5]

o

.
e NeursT ﬁ
gt L

Cfeaa

CCMT 2021/10/9

Translation Toolkit

13:55-14:20 52 LR 23 8F HRF
14:20-15:10 MBEERDEEREPanel (BEE: Tin THH FFEiE ZNR T58)
15:25-15:40 WBZENE S IRATUTATERAIRE MR (FIHkzn)
CCMT 2021/10/10
10:48-11:50 Panel 2inZlimEEENFNMARSNA (XA HiF BE: KRE RN BER @HE TH5H)
15:40-15:55 RE1 FBIFRFES: ACLIEXE GHINE TR M
16:10-16:25 53 BR+EH: IC—/RAFHTERSIMWMTINEGH Bk
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https://github.com/Jingjing-NLP/VOLT
https://github.com/FLC777/GLAT
mailto:lilei@cs.ucsb.edu

