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MT helps global information flow
7000 languages in the world
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Cross Language Barrier with Machine Translation

Global ConferencesForeign Media

Tourism International Trade



4

Machine Translation has increased international  trade by over 10%

Equivalent to 
make the 

world  
smaller than 

26%



• Basics 
– NMT   
– Pre-training paradigm 

• Monolingual Pre-training for NMT 
– Pre-training style 
– Contrast to other data augmentation methods 

• Multilingual  Pre-training for NMT 
• Pre-training for  Speech Translation

Outline
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PART I: Basics



What is Neural Machine Translation
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Automatic conversion of text/speech from one natural language to another 
with a single neural network

French: Quand tu souris, le monde entier s’arrête et se fige un instant. 

English: When you smile, the whole world stops and freezes for a moment.



Encoder-Decoder Paradigm 
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I like singing and dancing

我 喜欢 唱歌 和 跳舞

1. Encoding

2. Decoding

Encoder

Decoder

Encoder-Decoder Paradigm



Transformer Architecture 

9

你 好 吗 ？

Encoder

Layer

… …

<BOS> How are

Decoder

Layer

Linear

+Softmax

Linear

+Softmax

Linear

+Softmax

How are you

Encoder

Beam

Search

Decoder

…
Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm

Masked 
Multi-Head 
Attention

… …
Encoder


Layer
Encoder


Layer
Encoder


Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Transformer



Pre-training & Fine-tuning
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Model

Model

Large, unlabelled data 

Pre-training task 1

Pre-training task 2
…

Pre-training task n

Small, labelled data 

Fine-tune on downstream tasks

Self-supervised learning without labels 



Pre-training & Fine-tuning
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Model

Model

Large, unlabelled data 

Pre-training task 1

Pre-training task 2
…

Pre-training task n
Fine-tune on downstream tasks

Model Model Model Model



• Semi-supervised sequence learning, Google 2015
Context Representations
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History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 
2015

Train LSTM
Language Model
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• Elmo: Deep contextual word embeddings
Context Representations
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History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 & 
University of Washington, 2017

Train Separate Left-to-Right and 
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained 
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture



• GPT: improve language understanding by generative 
pre-training

Context Representations
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History of Contextual Representations

● Improving Language Understanding by Generative 
Pre-Training, OpenAI, 2018

Transformer
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• BERT: Pre-training of Deep Bidirectional Transformers 
for Language Understanding 

– Bidirectional 
– Random mask

Context Representations
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Layer 2
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Unidirectional context
Build representation incrementally
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Bidirectional context
Words can “see themselves”

Unidirectional vs. Bidirectional Models

Masked LM

● Solution: Mask out k% of the input words, and 
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon



BERT: Pre-training and Fine-tuning
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Fine-Tuning Procedure



BERT: Pre-training and Fine-tuning
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GLUE Results

MultiNLI
Premise: Hills and mountains are especially 
sanctified in Jainism.
Hypothesis: Jainism hates nature.
Label: Contradiction

CoLa
Sentence: The wagon rumbled down the road.
Label: Acceptable

Sentence: The car honked down the road.
Label: Unacceptable

BERT achieves SOTA results on a huge number of NLP benchmarks. 



Pre-training & Fine-tuning
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Image Source

https://towardsdatascience.com/a-review-of-bert-based-models-4ffdc0f15d58
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Pre-training & Fine-tuning

Does pre-training matter in NMT? 



PART II: Monolingual 
Pre-training for NMT



Why Monolingual
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MT: More data is better
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Why Monolingual
MT: Parallel data is limited

MonolingualParallel



• The early stage 
– NMT initialized with word2vec [ACL 2017, NAACL 2018, AI 2020]  

– NMT initialized  with language model [EMNLP 2017] 
• BERT fusion 

– BERT Incorporating  methods [ICLR 2020, AAAI 2020a] 

– BERT Tuning methods [AAAI 2020b] 
• Unified sequence to sequence pre-training 

– MASS: Masked  Sequence-to-Sequence Pre-training [ICML 2019] 
– BART: Denoising Sequence-to-Sequence Pre-training [ACL 2020]

PART2: Monolingual Pre-training for NMT
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• When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation  [NAACL 2018] 
• Improve Neural Machine Translation by Building Word Vector [AI 2020] 
• A bag of useful tricks for practical neural machine translation: Embedding layer initialization and large 

batch size  [ACL 2017]

NMT initialized  with word2vec 
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• The pre-trained embeddings help more when the size of the training 
data is small

When and Why are Pre-trained Word Embeddings Useful for Neural Machine 
Translation

25
Figure 1: BLEU and BLEU gain by data size.

that for all three languages the gain in BLEU score
demonstrates a similar trend to that found in GL in
the previous section: the gain is highest when the
baseline system is poor but not too poor, usually
with a baseline BLEU score in the range of 3-4.
This suggests that at least a moderately effective
system is necessary before pre-training takes ef-
fect, but once there is enough data to capture the
basic characteristics of the language, pre-training
can be highly effective.

5 Q3: Effect of Language Similarity

The main intuitive hypothesis as to why pre-
training works is that the embedding space be-
comes more consistent, with semantically simi-
lar words closer together. We can also make an
additional hypothesis: if the two languages in
the translation pair are more linguistically simi-
lar, the semantic neighborhoods will be more sim-
ilar between the two languages (i.e. semantic dis-
tinctions or polysemy will likely manifest them-
selves in more similar ways across more simi-
lar languages). As a result, we may expect that
the gain from pre-training of embeddings may be
larger when the source and target languages are
more similar. To examine this hypothesis, we se-
lected Portuguese as the target language, which
when following its language family tree from top
to bottom, belongs to Indo-European, Romance,

Dataset Lang. Family std pre

ES ! PT West-Iberian 17.8 24.8 (+7.0)
FR ! PT Western Romance 12.4 18.1 (+5.7)
IT ! PT Romance 14.5 19.2 (+4.7)

RU ! PT Indo-European 2.4 8.6 (+6.2)
HE ! PT No Common 3.0 11.9 (+8.9)

Table 3: Effect of linguistic similarity and pre-training
on BLEU. The language family in the second column is
the most recent common ancestor of source and target
language.

Western Romance, and West-Iberian families. We
then selected one source language from each fam-
ily above.8 To avoid the effects of training set size,
all pairs were trained on 40,000 sentences.

From Table 3, we can see that the BLEU scores
of ES, FR, and IT do generally follow this hy-
pothesis. As we move to very different languages,
RU and HE see larger accuracy gains than their
more similar counterparts FR and IT. This can be
largely attributed to the observation from the pre-
vious section that systems with larger headroom to
improve tend to see larger increases; RU and HE
have very low baseline BLEU scores, so it makes
sense that their increases would be larger.

6 Q4: Effect of Word Embedding
Alignment

Until now, we have been using embeddings that
have been trained independently in the source and
target languages, and as a result there will not nec-
essarily be a direct correspondence between the
embedding spaces in both languages. However,
we can postulate that having consistent embedding
spaces across the two languages may be benefi-
cial, as it would allow the NMT system to more
easily learn correspondences between the source
and target. To test this hypothesis, we adopted
the approach proposed by Smith et al. (2017) to
learn orthogonal transformations that convert the
word embeddings of multiple languages to a single
space and used these aligned embeddings instead
of independent ones.

From Table 4, we can see that somewhat sur-
prisingly, the alignment of word embeddings was
not beneficial for training, with gains or losses es-
sentially being insignificant across all languages.
This, in a way, is good news, as it indicates that a
priori alignment of embeddings may not be neces-

8English was excluded because the TED talks were orig-
inally in English, which results in it having much higher
BLEU scores than the other languages due to it being direct
translation instead of pivoted through English like the others.
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When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation, [Qi et al NAACL 2018]



• All pairs are  trained on 40,000 sentences 
• Language similarity with PT: ES>FR>IT>RU  

– BLEU improves: ES>FR>IT 
• RU and HE have very low baseline BLEU scores, so it makes sense that their increases 

would be larger

Effect of language similarity 
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• Training on both low-resource and higher-resource languages, and test on only the low-
resource language 
– bi: the bilingual  baseline 
– std: the multilingual  baseline 
– pre: pre-training word embedding 
– align: convert the word embeddings of multiple languages to a single space [Smith et al., 2017]  

• Alignment ensures that the word embeddings of the two source languages are put into similar 
vector spaces,  and improves the performance 

•

Effect of multilingual alignmet

28

Dataset unaligned aligned

GL ! EN 12.8 11.5 (�1.3)
PT ! EN 30.8 30.6 (�0.2)

AZ ! EN 2.0 2.1 (+0.1)
TR ! EN 17.9 17.7 (�0.2)

BE ! EN 3.0 3.0 (+0.0)
RU ! EN 21.1 21.4 (+0.3)

Table 4: Correlation between word embedding align-
ment and BLEU score in bilingual translation task.

Train Eval bi std pre align

GL + PT GL 2.2 17.5 20.8 22.4
AZ + TR AZ 1.3 5.4 5.9 7.5
BE + RU BE 1.6 10.0 7.9 9.6

Table 5: Effect of pre-training on multilingual trans-
lation into English. bi is a bilingual system trained
on only the eval source language and all others are
multi-lingual systems trained on two similar source
languages.

sary in the context of NMT, since the NMT system
can already learn a reasonable projection of word
embeddings during its normal training process.

7 Q5: Effect of Multilinguality

Finally, it is of interest to consider pre-training
in multilingual translation systems that share an
encoder or decoder between multiple languages
(Johnson et al., 2016; Firat et al., 2016), which is
another promising way to use additional data (this
time from another language) as a way to improve
NMT. Specifically, we train a model using our
pairs of similar low-resource and higher-resource
languages, and test on only the low-resource lan-
guage. For those three pairs, the similarity of
GL/PT is the highest while BE/RU is the lowest.

We report the results in Table 5. When applying
pre-trained embeddings, the gains in each transla-
tion pair are roughly in order of their similarity,
with GL/PT showing the largest gains, and BE/RU
showing a small decrease. In addition, it is also
interesting to note that as opposed to previous sec-
tion, aligning the word embeddings helps to in-
crease the BLEU scores for all three tasks. These
increases are intuitive, as a single encoder is used
for both of the source languages, and the encoder
would have to learn a significantly more compli-
cated transform of the input if the word embed-
dings for the languages were in a semantically sep-
arate space. Pre-training and alignment ensures
that the word embeddings of the two source lan-
guages are put into similar vector spaces, allowing

the model to learn in a similar fashion as it would
if training on a single language.

Interestingly, BE ! EN does not seem to ben-
efit from pre-training in the multilingual scenario,
which hypothesize is due to the fact that: 1) Be-
larusian and Russian are only partially mutually
intelligible (Corbett and Comrie, 2003), i.e., they
are not as similar; 2) the Slavic languages have
comparatively rich morphology, making sparsity
in the trained embeddings a larger problem.

8 Analysis

8.1 Qualitative Analysis

Finally, we perform a qualitative analysis of the
translations from GL ! EN, which showed one of
the largest increases in quantitative numbers. As
can be seen from Table 6, pre-training not only
helps the model to capture rarer vocabulary but
also generates sentences that are more grammat-
ically well-formed. As highlighted in the table
cells, the best system successfully translates a per-
son’s name (“chris”) and two multi-word phrases
(“big lawyer” and “patent legislation”), indicat-
ing the usefulness of pre-trained embeddings in
providing a better representations of less frequent
concepts when used with low-resource languages.

In contrast, the bilingual model without pre-
trained embeddings substitutes these phrases for
common ones (“i”), drops them entirely, or pro-
duces grammatically incorrect sentences. The in-
comprehension of core vocabulary causes devia-
tion of the sentence semantics and thus increases
the uncertainty in predicting next words, gener-
ating several phrasal loops which are typical in
NMT systems.

8.2 Analysis of Frequently Generated
n-grams.

We additionally performed pairwise comparisons
between the top 10 n-grams that each system (se-
lected from the task GL ! EN) is better at gen-
erating, to further understand what kind of words
pre-training is particularly helpful for.9 The re-
sults displayed in Table 7 demonstrate that pre-
training helps both with words of low frequency in
the training corpus, and even with function words
such as prepositions. On the other hand, the im-
provements in systems without pre-trained embed-

9Analysis was performed using compare-mt.py from
https://github.com/neubig/util-scripts/.
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• Unsupervised pretraining for sequence to sequence learning [EMNLP 2017] 

• Exploiting Source-side Monolingual Data in Neural Machine Translation [EMNLP 2016] 
• Semi-Supervised Learning for Neural Machine Translation [ACL 2016]

NMT initialized with language model

29
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• The red parameters are the encoder and the blue parameters are the decoder.  
• All parameters in a shaded box are pre-trained with RNN language models  
• Otherwise,  randomly initialized.

Unsupervised pretraining for sequence to sequence learning

30

A B C <EOS> W X Y Z

W X Y Z <EOS>

Embedding

First RNN Layer

Softmax

Second RNN Layer

Figure 1: Pretrained sequence to sequence model. The red parameters are the encoder and the blue
parameters are the decoder. All parameters in a shaded box are pretrained, either from the source side
(light red) or target side (light blue) language model. Otherwise, they are randomly initialized.

2 Methods

In the following section, we will describe our basic
unsupervised pretraining procedure for sequence
to sequence learning and how to modify sequence
to sequence learning to effectively make use of the
pretrained weights. We then show several exten-
sions to improve the basic model.

2.1 Basic Procedure
Given an input sequence x1, x2, ..., xm and an
output sequence yn, yn�1, ..., y1, the objective of
sequence to sequence learning is to maximize the
likelihood p(yn, yn�1, ..., y1|x1, x2, ..., xm).
Common sequence to sequence learn-
ing methods decompose this objective
as p(yn, yn�1, ..., y1|x1, x2, ..., xm) =Qn

t=1 p(yt|yt�1, ..., y1;x1, x2, ..., xm).
In sequence to sequence learning, an RNN en-

coder is used to represent x1, ..., xm as a hidden
vector, which is given to an RNN decoder to pro-
duce the output sequence. Our method is based
on the observation that without the encoder, the
decoder essentially acts like a language model on
y’s. Similarly, the encoder with an additional out-
put layer also acts like a language model. Thus it
is natural to use trained languages models to ini-
tialize the encoder and decoder.

Therefore, the basic procedure of our approach
is to pretrain both the seq2seq encoder and de-
coder networks with language models, which can
be trained on large amounts of unlabeled text data.
This can be seen in Figure 1, where the parame-
ters in the shaded boxes are pretrained. In the fol-
lowing we will describe the method in detail using

machine translation as an example application.

First, two monolingual datasets are collected,
one for the source side language, and one for the
target side language. A language model (LM) is
trained on each dataset independently, giving an
LM trained on the source side corpus and an LM
trained on the target side corpus.

After two language models are trained, a multi-
layer seq2seq model M is constructed. The em-
bedding and first LSTM layers of the encoder and
decoder are initialized with the pretrained weights.
To be even more efficient, the softmax of the de-
coder is initialized with the softmax of the pre-
trained target side LM.

2.2 Monolingual language modeling losses

After the seq2seq model M is initialized with the
two LMs, it is fine-tuned with a labeled dataset.
However, this procedure may lead to catastrophic
forgetting, where the model’s performance on the
language modeling tasks falls dramatically after
fine-tuning (Goodfellow et al., 2013). This may
hamper the model’s ability to generalize, espe-
cially when trained on small labeled datasets.

To ensure that the model does not overfit the la-
beled data, we regularize the parameters that were
pretrained by continuing to train with the monolin-
gual language modeling losses. The seq2seq and
language modeling losses are weighted equally.

In our ablation study, we find that this technique
is complementary to pretraining and is important
in achieving high performance.
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Pretraining on a lot of unlabeled 
data is essential.  
If the model is initialized with LMs 
that are pretrained on the source 
part and target part of the parallel 
corpus  
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BLEU
System ensemble? newstest2014 newstest2015
Phrase Based MT (Williams et al., 2016) - 21.9 23.7
Supervised NMT (Jean et al., 2015) single - 22.4
Edit Distance Transducer NMT (Stahlberg et al., 2016) single 21.7 24.1
Edit Distance Transducer NMT (Stahlberg et al., 2016) ensemble 8 22.9 25.7
Backtranslation (Sennrich et al., 2015a) single 22.7 25.7
Backtranslation (Sennrich et al., 2015a) ensemble 4 23.8 26.5
Backtranslation (Sennrich et al., 2015a) ensemble 12 24.7 27.6
No pretraining single 21.3 24.3
Pretrained seq2seq single 24.0 27.0
Pretrained seq2seq ensemble 5 24.7 28.1

Table 1: English!German performance on WMT test sets. Our pretrained model outperforms all other
models. Note that the model without pretraining uses the LM objective.

Figure 3: English!German ablation study measuring the difference in validation BLEU between various
ablations and the full model. More negative is worse. The full model uses LMs trained with monolingual
data to initialize the encoder and decoder, plus the language modeling objective.

structed with the 5 best performing models on the
validation set, which are trained with different hy-
perparameters.

Results: Table 1 shows the results of our
method in comparison with other baselines. Our
method achieves a new state-of-the-art for sin-
gle model performance on both newstest2014
and newstest2015, significantly outperforming the
competitive semi-supervised backtranslation tech-
nique (Sennrich et al., 2015a). Equally impressive
is the fact that our best single model outperforms
the previous state of the art ensemble of 4 models.
Our ensemble of 5 models matches or exceeds the

previous best ensemble of 12 models.

Ablation study: In order to better understand
the effects of pretraining, we conducted an abla-
tion study by modifying the pretraining scheme.
We were primarily interested in varying the pre-
training scheme and the monolingual language
modeling objectives because these two techniques
produce the largest gains in the model. Figure
3 shows the drop in validation BLEU of various
ablations compared with the full model. The full
model uses LMs trained with monolingual data to
initialize the encoder and decoder, in addition to
the language modeling objective. In the follow-
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Only pretraining the 
decoder is better than only 
pretraining the encoder  
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data to initialize the encoder and decoder, plus the language modeling objective.
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validation set, which are trained with different hy-
perparameters.

Results: Table 1 shows the results of our
method in comparison with other baselines. Our
method achieves a new state-of-the-art for sin-
gle model performance on both newstest2014
and newstest2015, significantly outperforming the
competitive semi-supervised backtranslation tech-
nique (Sennrich et al., 2015a). Equally impressive
is the fact that our best single model outperforms
the previous state of the art ensemble of 4 models.
Our ensemble of 5 models matches or exceeds the

previous best ensemble of 12 models.

Ablation study: In order to better understand
the effects of pretraining, we conducted an abla-
tion study by modifying the pretraining scheme.
We were primarily interested in varying the pre-
training scheme and the monolingual language
modeling objectives because these two techniques
produce the largest gains in the model. Figure
3 shows the drop in validation BLEU of various
ablations compared with the full model. The full
model uses LMs trained with monolingual data to
initialize the encoder and decoder, in addition to
the language modeling objective. In the follow-
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Pretrain as much as 
possible because the 
benefits compound.
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Backtranslation (Sennrich et al., 2015a) ensemble 12 24.7 27.6
No pretraining single 21.3 24.3
Pretrained seq2seq single 24.0 27.0
Pretrained seq2seq ensemble 5 24.7 28.1

Table 1: English!German performance on WMT test sets. Our pretrained model outperforms all other
models. Note that the model without pretraining uses the LM objective.

Figure 3: English!German ablation study measuring the difference in validation BLEU between various
ablations and the full model. More negative is worse. The full model uses LMs trained with monolingual
data to initialize the encoder and decoder, plus the language modeling objective.

structed with the 5 best performing models on the
validation set, which are trained with different hy-
perparameters.

Results: Table 1 shows the results of our
method in comparison with other baselines. Our
method achieves a new state-of-the-art for sin-
gle model performance on both newstest2014
and newstest2015, significantly outperforming the
competitive semi-supervised backtranslation tech-
nique (Sennrich et al., 2015a). Equally impressive
is the fact that our best single model outperforms
the previous state of the art ensemble of 4 models.
Our ensemble of 5 models matches or exceeds the

previous best ensemble of 12 models.

Ablation study: In order to better understand
the effects of pretraining, we conducted an abla-
tion study by modifying the pretraining scheme.
We were primarily interested in varying the pre-
training scheme and the monolingual language
modeling objectives because these two techniques
produce the largest gains in the model. Figure
3 shows the drop in validation BLEU of various
ablations compared with the full model. The full
model uses LMs trained with monolingual data to
initialize the encoder and decoder, in addition to
the language modeling objective. In the follow-
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• Insight 
– Pre-training is effective on low-resource NMT 
– Pre-training as much as components  
– Pre-training as much as training data 
– Cross-lingual information helps 

• Limitations: 
– The improvements on rich resource NMT is not large enough 
– The pre-training model is trained on limited training corpus, e.g. the 

monolingual part of the parallel data 
– Only a subset of parameters are  pre-trained

Summary
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Then, BERT comes…
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 What happens?
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Pre-training data scale increased 
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Pre-training framework changed 
BERT (Ours)
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Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32
13https://cloudplatform.googleblog.com/2018/06/Cloud-

TPU-now-offers-preemptible-pricing-and-global-
availability.html
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uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32
13https://cloudplatform.googleblog.com/2018/06/Cloud-

TPU-now-offers-preemptible-pricing-and-global-
availability.html
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Does BERT matter in NMT? 

 What happens?



• The Bronze Age 
– NMT initialized with word2vec [ACL 2017, NAACL 2018, AI 2020]  

– NMT initialized  with language model [EMNLP 2017] 
• BERT fusion 

– BERT Incorporating  methods [ICLR 2020, AAAI 2020a] 

– BERT Tuning methods [AAAI 2020b] 
• Unified sequence to sequence pre-training 

– MASS: Masked  Sequence-to-Sequence Pre-training [ICML 2019] 
– BART: Denoising Sequence-to-Sequence Pre-training [ACL 2020]

PART2: Monolingual Pre-training for NMT
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• Fine-tuning BERT does NOT work !  
– BERT and XLM pre-training for the encoder  decreased the performance  
– XLM pre-training for the decoder enlarged the performance gap 

• BERT-Frozen achieved  improvements
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and achieved great improvements when the data scale becomes large and deep neural networks
are employed. ELMo was proposed in Peters et al. (2018) based on bidirectional LSTMs and its
pre-trained models are fed into downstream tasks as context-aware inputs. In GPT (Radford et al.,
2018), a Transformer based language model is pre-trained on unlabeled dataset and then finetuned
on downstream tasks. BERT (Devlin et al., 2019) is one of the widely adopted pre-training approach
for model initialization. The architecture of BERT is the encoder of Transformer (Vaswani et al.,
2017). Two kinds of objective functions are used in BERT training: (1) Masked language modeling
(MLM), where 15% words in a sentence are masked and BERT is trained to predict them with their
surrounding words. (2) Next sentence prediction (NSP): Another task of pre-training BERT is to
predict whether two input sequences are adjacent. For this purpose, the training corpus consists
of tuples ([cls], input 1, [sep], input 2, [sep]), with learnable special tokens [cls]
to classify whether input 1 and input 2 are adjacent and [sep] to segment two sentences, and
with probability 50%, the second input is replaced with a random input. Variants of BERT have been
proposed: In XLM (Lample & Conneau, 2019), the model is pre-trained based on multiple languages
and NSP task is removed; in RoBERTa (Liu et al., 2019), more unlabeled data is leveraged without
NSP task neither; in XLNet (Yang et al., 2019b), a permutation based modeling is introduced.

3 A PRELIMINARY EXPLORATION

While a few pieces of work (Lample & Conneau, 2019; Song et al., 2019) design specific pre-
training methods for NMT, they are time and resource consuming given that they need to pre-train
large models from scratch using large-scale data, and even one model for each language pair. In this
work, we focus on the setting of using a pre-trained BERT model. Detailed model download links
can be found in Appendix D.

Considering that pre-trained models have been utilized in two different ways for other natural lan-
guage tasks, it is straightforward to try them for NMT. Following previous practice, we make the
following attempts.

(I) Use pre-trained models to initialize the NMT model. There are different implementations for this
approach. (1) Following (Devlin et al., 2019), we initialize the encoder of an NMT model with a pre-
trained BERT. (2) Following (Lample & Conneau, 2019), we initialize the encoder and/or decoder
of an NMT model with XLM.

(II) Use pre-trained models as inputs to the NMT model. Inspired from (Peters et al., 2018), we feed
the outputs of the last layer of BERT to an NMT model as its inputs.

We conduct experiments on the IWSLT’14 English!German translation, a widely adopted dataset
for machine translation consisting of 160k labeled sentence pairs. We choose Transformer (Vaswani
et al., 2017) as the basic model architecture with transformer iwslt de en configuration (a
six-layer model with 36.7M parameters). The translation quality is evaluated by BLEU (Papineni
et al., 2002) score; the larger, the better. Both BERTbase and XLM models are pre-trained and we
get them from the Web. More details about the experimental settings are included in Appendix A.2.

Table 1: Preliminary explorations on IWSLT’14 English!German translation.
Algorithm BLEU score

Standard Transformer 28.57

Use BERT to initialize the encoder of NMT 27.14
Use XLM to initialize the encoder of NMT 28.22
Use XLM to initialize the decoder of NMT 26.13
Use XLM to initialize both the encoder and decoder of NMT 28.99

Leveraging the output of BERT as embeddings 29.67

The results are shown in Table 1. We have several observations: (1) Using BERT to initialize the en-
coder of NMT can only achieve 27.14 BLEU score, which is even worse than standard Transformer
without using BERT. That is, simply using BERT to warm up an NMT model is not a good choice.
(2) Using XLM to initialize the encoder or decoder respectively, we get 28.22 or 26.13 BLEU score,
which does not outperform the baseline. If both modules are initialized with XLM, the BLEU score
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• BERT features are directly fed to both encoder and decoder layers  
• Additional attention model to incorporate BERT features
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is boosted to 28.99, slightly outperforming the baseline. Although XLM achieved great success
on WMT’16 Romanian-to-English, we get limited improvement here. Our conjecture is that the
XLM model is pre-trained on news data, which is out-of-domain for IWSLT dataset mainly about
spoken languages and thus, leading to limited improvement. (3) When using the output of BERT
as context-aware embeddings of the encoder, we achieve 29.67 BLEU, much better than using pre-
trained models for initialization. This shows that leveraging BERT as a feature provider is more
effective in NMT. This motivates us to take one step further and study how to fully exploit such
features provided by pre-trained BERT models.

4 ALGORITHM

In this section, we first define the necessary notations, then introduce our proposed BERT-fused
model and finally provide discussions with existing works.

Notations Let X and Y denote the source language domain and target language domain respectively,
which are the collections of sentences with the corresponding languages. For any sentence x 2 X
and y 2 Y , let lx and ly denote the number of units (e.g., words or sub-words) in x and y. The
i-th unit in x/y is denoted as xi/yi. Denote the encoder, decoder and BERT as Enc, Dec and BERT
respectively. For ease of reference, we call the encoder and decoder in our work as the NMT module.
W.l.o.g., we assume both the encoder and decoder consists of L layers. Let attn(q,K, V ) denote
the attention layer, where q, K and V indicate query, key and value respectively (Vaswani et al.,
2017). We use the same feed-forward layer as that used in (Vaswani et al., 2017) and denote it as
FFN. Mathematical formulations of the above layers are left at Appendix E.

4.1 BERT-FUSED MODEL

An illustration of our algorithm is shown in Figure 1. Any input x 2 X is progressively processed
by the BERT, encoder and decoder.

BERT-Enc
Attention

Add & Norm

Feed
Forward
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Self
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BERT-Dec
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Figure 1: The architecture of BERT-fused model. The left and right figures represent the BERT,
encoder and decoder respectively. Dash lines denote residual connections. HB (red part) and H

L
E

(green part) denote the output of the last layer from BERT and encoder.

Step-1: Given any input x 2 X , BERT first encodes it into representation HB = BERT(x). HB is
the output of the last layer in BERT. The hB,i 2 HB is the representation of the i-th wordpiece in x.

Step-2: Let H l
E denote the hidden representation of l-th layer in the encoder, and let H0

E denote
word embedding of sequence x. Denote the i-th element in H

l
E as h

l
i for any i 2 [lx]. In the l-th
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• Fine-tuning dataset 
– Low resource: IWSLT En-De, En-FR, En-Zh, En-Es (less than 

250 k sentence pairs) 
– Rich resource: WMT14 En-De and En-Fr (4 M and 36 M 

sentence pairs) 
• Settings 

– BERT base for IWSLT 
– BERT large for WMT  
– Both the BERT-encoder and BERTdecoder attention are 

randomly initialized

Datasets and settings
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• Experiments on a strong baseline 
• BERT-fused model outperforms transformer baseline in all settings

Main results on supervised MT
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• Pre-training plays an crucial role in unsupervised NMT (Lample v.s. xml, mass and 
BERT-fused) 

• BERT-fused outperforms XLM and MASS 
• The comparison is slightly unfair, since BERT-fused introduced additional parameters

Main results on unsupervised MT
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Jointly train BERT model with the NMT can also boost the baseline 
from 28.57 to 28.87.  
But it is not as good as fixing the BERT part, whose BLEU is 30.45  

•

NOT Tune BERT
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT

2Data at http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.
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NMT Pre-training is also important to the success of BERT-fused model 
Without NMT pre-training, the performance lags behind the baseline model

NMT pre-training matters 
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT

2Data at http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.
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Remove attention module, the performance still outperforms baseline, but 
falls behind BERT-fused model 
It suggest that separate BERT model provides additional gains

BERT attention module matters 
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT

2Data at http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.
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Replace BERT representation with another transformer model,  the performance drops significantly 
It indicates BERT provides meaningful information and the improvements is not from the additional 
parameters. 

Of course,  BERT matters 
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT

2Data at http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.
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• Key idea 
– Dynamic fusion of different BERT layers, while BERT-fused model only uses the last layer of BERT  
– Incorporate BERT  into all encoder layers and decoder layers with adaptive weight 
– Experiments including both BERT & GPT  

Acquiring Knowledge from Pre-trained Model to Neural Machine Translation
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There are two main objectives to train the pre-trained
model (Yang et al. 2019b). The first kind is using an auto-
regressive language model objective, which predicts the next
word P (zk|z<k; ✓P) by the kth representation r

p
L,k from

R
p
L. Another popular method is similar to the auto-encoder,

which needs to pre-process the sentence z to get a processed
one ẑ by masking several words z

m. Then, the pre-trained
model predicts the masked words to re-construct the z by
P (zm|ẑ; ✓P) in the training process.

3 Approach

Owing to the limited amount of parallel data, it is hard
for NMT to generate appropriate contextual representation.
The pre-trained models are an useful complement to pro-
vide NMT models with proper language knowledge. How-
ever, previous integration methods like fine-tuning: initial-
izing parameters from pre-trained models, may not suit for
machine translation which is a bilingual generation task. The
general contextual information from pre-trained models is
quite different from the task-specific representation of NMT
model.

Thus, we propose a novel APT framework including
a dynamic fusion mechanism and a knowledge distillation

paradigm, to fully utilize pre-trained contextual knowledge
in NMT models. We will introduce the two methods in de-
tails and discuss the different integration strategies in the
encoder and decoder of NMT models. For convenience, we
will present the dynamic fusion mechanism on the encoder
and the knowledge distillation paradigm on the decoder, re-
spectively.

3.1 Dynamic Fusion Mechanism

We propose a dynamic fusion mechanism to obtain the task-

specific representation by transforming general pre-trained
representations in pre-trained models. Specifically, we use
an adapter for transforming general knowledge to more ap-
propriate features of NMT during the training process. Fur-
thermore, previous work (Peters et al. 2018; Dou et al. 2018;
Wang et al. 2018) shows that representations from each layer
in a deep model have different aspect of meaning. Following
this intuition, we expand our idea by employing the adapter
on all layers’ representation from pre-trained models to get
different kinds of knowledge, from concrete to abstract.

Formally, the general representations from pre-trained
models are R

P = (RP
1 , · · · ,R

P
l , · · · ,R

P
L ). For the lth

layer’s representation R
P
l , the task-specific representation is

computed by:

R
T
l = Gl(R

P
l ), (7)

where the proposed adapter Gl(·) is a simple MLP. Mikolov,
Le, and Sutskever (2013) and Wu et al. (2019) pointed out
the representation space of similar languages can be trans-
ferred by a linear mapping. In our scenario, which is in same
language, the mapping function can transfer the general rep-
resentation to task-specific representation effectively.

Subsequently, we propose two methods based on different
granularity to control how much the task-specific represen-
tation should be fused into Transformer dynamically. First,
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Figure 2: Overview of the dynamic fusion mechanism em-
ployed on the encoder of Transformer.

the demand of external information from each layer is dif-
ferent. Thus, compared with using layer coordination (He et
al. 2018) directly, we further propose a layer-aware atten-

tion mechanism to capture compound contextual informa-
tion. Formally, given the nth layer’s vanilla representation
R

E
n computed by Equation 1-2, the corresponding external

representation is computed by:

C
T
n =

LX

l=1

↵lR
T
l ,↵l =

exp(el)PL
t=1 exp(et)

, (8)

el = FFN(
1

I

IX

i=1

r
T
l,i ·

1

I

IX

i=1

r
E
n,i). (9)

The layer-aware attention mechanism can determine which
representation from pre-trained model is more important for
current layer. The composite representation C

T
n can capture

more suitable information by considering a larger context.
Following above intuition, the demand of each hidden

state from same layer is also different. A fine-grained
method is necessary to control the fusion ratio of each
hidden state. We adopt a simple contextual gating mecha-

nism (Kuang et al. 2018) to implement it.
Formally, the representation c

T
n,i from C

T
n is fused into the

corresponding state r
E
n,i from R

E
n by:

r
E
n,i = r

E
n,i + �n,i ⇤ c

T
n,i, (10)

where the gate �n,i is computed by:

�n,i = sigmoid(FFN(rEn,i · c
T
n,i)) (11)

The overview is illustrated in Figure 2. Different from pre-
vious works (Ramachandran, Liu, and Le 2017; Peters et
al. 2018; Radford et al. 2018), the proposed feature-based
method can make a deep fusion which could incorporate ap-
propriate information into each layer, that is, Transformer
can access specific surface information in lower layers and
the latent one in higher layers.
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Model Pre-trained Model EN!DE DE!EN ZH!EN
Encoder Decoder BLEU � BLEU � BLEU �

Transformer (Vaswani et al. 2017) N/A N/A 27.3 � N/A � N/A �
Transformer (Zheng et al. 2019) N/A N/A 27.14 � N/A � N/A �
Transformer (Dou et al. 2018) N/A N/A 27.31 � N/A � 24.13 �
Transformer N/A N/A 27.31 � 32.51 � 24.47 �

w/ Fine-tuning

GPT N/A 27.82 +0.51 33.17 +0.66 25.11 +0.64
N/A GPT 27.45 +0.14 32.87 +0.36 24.59 +0.12
GPT GPT 27.85 +0.54 32.79 +0.28 25.21 +0.74

BERT N/A 28.22 +0.91 33.64 +1.13 25.33 +0.86
N/A BERT 27.42 +0.11 33.13 +0.62 24.78 +0.31

BERT BERT 28.32 +1.01 33.57 +1.06 25.45 +0.98
GPT BERT 28.29 +0.98 33.33 +0.82 25.42 +0.95

BERT GPT 28.32 +1.01 33.57 +1.05 25.46 +0.99
MASS 28.07 +0.76 33.29 +0.78 25.11 +0.64
DAE 27.63 +0.33 33.03 +0.52 24.67 +0.20

w/ APT Framework

GPT BERT 28.89 +1.58 34.32 +1.81 25.98 +1.51
BERT GPT 29.23 +1.92 34.84 +2.33 26.21 +1.74
GPT GPT 28.97 +1.66 34.26 +1.75 26.01 +1.54

BERT BERT 29.02 +1.71 34.67 +2.16 26.46 +1.99

Table 1: Translation qualities on the EN!DE, DE!EN and ZH!EN experiments.

of layers for the encoder and decoder are 6. Sentence pairs
are batched together by approximate sentence length. Each
batch has 50 sentence and the maximum length of a sentence
is limited to 100. We use label smoothing with value 0.1
and dropout with a rate of 0.1. We use the Adam (Kingma
and Ba 2014) to update the parameters, and the learning rate
was varied under a warm-up strategy with 4000 steps. Other
settings of Transformer follow Vaswani et al. (2017) .

we also implement GPT (Radford et al. 2018), BERT (De-
vlin et al. 2018) and MASS (Song et al. 2019) in our Trans-
former system. The implementation details are as follows:
• GPT: Radford et al. (2018) proposed a pre-trained self-

attention language model. We implement it on both source
and target languages based on the aforementioned Trans-
former decoder.

• BERT: Devlin et al. (2018) proposed a pre-trained bi-
directional encoder optimized by the masked token and
next sentence objectives. Following Lample and Con-
neau (2019) , we implement it only using the masked to-
ken objective, which doesn’t require monolingual data has
document boundary.

• MASS: Song et al. (2019) proposed a masked sequence
to sequence pre-training model for text generation tasks.
It masks a continuous segment from a sentence as the la-
bel, and the rest of the sentence as the input of encoder.
We implement it in our Transformer system without any
modification.
After the training stage, we use beam search for heuris-

tic decoding, and the beam size is set to 4. We measure
the translation quality with the NIST-BLEU (Papineni et al.
2002). We implement our approach with the in-house imple-
mentation of Transformer derived from the tensor2tensor

2.
2https://github.com/tensorflow/tensor2tensor

4.2 Main Results

Translation Quality The results on the EN!DE,
DE!EN and ZH!EN are shown in Table 1. For a fair com-
parison, we also report several Transformer baseline from
previous work (Vaswani et al. 2017; Zheng et al. 2019;
Dou et al. 2018). Our Transformer baseline achieves simi-
lar or better results comparing with them. Compared with
our baseline, Transformer with the APT framework based
on different pre-trained models improves 1.92, 2.33 and 1.99
BLEU scores on the EN!DE, DE!EN and ZH!EN, re-
spectively (bold font). It’s worth to mention that the per-
centage improvement on the ZH!EN, whose difference of
syntax and morphology is bigger than German and English,
is more than other language pairs.

Compared with Fine-tuning We also implement the fine-
tuning method with different pre-trained models. When the
encoder is initialized by BERT and the decoder is initialized
by BERT or GPT, the BLEU score improves about 1 point
on three translation tasks. Our APT framework outperforms
the fine-tuning method on all tasks whenever using BERT or
GPT. This results demonstrate that the proposed approach is
more effective for obtaining the knowledge from pre-trained
model than fine-tuning in neural machine translation.

GPT Vs. BERT Although our work combining with GPT
or BERT achieves remarkable improvements, there are sev-
eral differences when employing them on encoder or de-
coder. First, BERT is better than GPT on the encoder when
using the proposed APT framework (+0.13 to +0.48). We
think the reason is that compared with the uni-directional
language model of GPT, the masked language model could
obtain more contextual information. While on the decoder
side, GPT gets better performance than BERT due to it can
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• Pre-training is much more promising  
– better generalization ability 
– Back translation is limited with data scale

 Pre-training has better generalization ability  
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monolingual data from the same source of BERT
training by random selection from the Wikipedia13

14. Previous work shows that data capacity for back-
translation does not consistently improve perfor-
mance beyond a threshold (Poncelas et al., 2018),
therefore we choose a suitable amount and scale up
the data from 625k to 18M with the ratio between
authentic and synthetic data being 1:0.5, 1:1, 1:2
and 1:4, respectively (see Table 2). In total we have
18M monolingual sentences in German and 5M
monolingual sentences in English. All datasets are
preprocessed similarly to the training data.

4.4 Evaluation

We use the multi-bleu.perl from Moses on
tokenized sentences for BLEU evaluation of all
systems. The tasks of conjunction disambiguation
and idiom translation are evaluated on the presence
percentage of correct conjunction and pre-defined
blacklist words, respectively. The task of gender
bias is evaluated on morphological analysis from
3 aspects: overall accuracy calculated by the per-
centage of instances in which the translation pre-
served the gender of the entity from the original sen-
tence, �G denoting the difference in performance
between masculine and feminine scores, and �S

indicating the difference in performance between
pro-stereotypical and anti-stereotypical gender role
assignments (see examples in Appendix A.4).

Other tests use a contrastive pair paradigm,
which tests a model’s ability to discriminate be-
tween given good and bad translations by exploit-
ing the fact that NMT systems can be viewed as lan-
guage models of the target language, conditioned
on source texts. Similar to language models, NMT
models can score a negative log probability for sen-
tences. If the model score of the actual translation
is smaller than the contrastive translation, we treat
the decision as correct. We aggregate model deci-
sions on the whole test set and report the overall
percentage of correct decisions as results.

5 Results

The overall BLEU points are given in Table 315.
For both rich- and low-resource settings, the BERT-
fused model demonstrates stronger performances
than the baseline. However, systems augmented

13 dumps.wikimedia.org/dewiki/latest
14 dumps.wikimedia.org/enwiki/latest
15 We successfully reproduced the BLUE scores of the baseline

and BERT-fused model as reported in Zhu et al. (2020).

System En!De Zh!En
Standard Transformer 29.20 45.15
+ back translation (1:0.5) 30.41 46.70
+ back translation (1:1) 30.25 47.23

+ back translation (1:2) 30.18 47.04
+ back translation (1:4) 30.25 46.39
BERT-fused model 30.03 46.55

Table 3: Model performance in terms of BLUE scores
(case-insensitive). The best scores are marked in bold.

System Params Speed (tok/sec) Len% (tgt/src)
Back-translation 2.93B 1269.46 0.95
BERT-fused model 3.43B 355.24 0.95

Table 4: Model comparison in En!De. We list the
results of baseline model and Zh!En in Appendix B.

with back-translated data are better than the BERT-
fused model, with the best score achieved by model
trained with 2.25M synthetic data (1:0.5 setting)
for En!De, and 1.25M synthetic data (1:1 set-
ting) for Zh!En. This shows that in terms of
BLUE, the advantage of large-scale pre-training
is not obvious compared with large-scale back-
translation, even though the latter requires far less
training data and computational resources. Taking
En!De as an example (Table 4), back-translation
uses only 85% parameters compared to the BERT-
fused method, while achieves higher BLEU points,
3.6 times faster decoding speed, and the same tar-
get/source length ratio which indicates an equiva-
lent information richness in the target translation.

5.1 Morphology

Table 5 shows the results for morphology test in
En!De translation. Generally, for derivational (Ta-
ble 5a), agreement (Table 5b) and consistency (Ta-
ble 5c) content, pre-training does not show promi-
nent advantages over back-translation in helping
the standard Transformer model convey correct
morphology from source to target. Prior work on
monolingual tasks (Hofmann et al., 2020; Edmis-
ton, 2020; Haley, 2020) has shown that BERT is
capable of encoding morphological information
and many morphological features can be extracted
by training a simple classifier on a BERT layer. In
our bilingual task, however, BERT is trained in
the source context and evaluated in the target lan-
guage. The performance discrepancy shows that
BERT’s morphology prediction for novel words
in mono language results from high-frequent mor-
phological data during pre-training, which helps
BERT to memorize the statistical connection over

Figure 1: Results on homogragh translation test. We
list specific data of each model in Appendix C.

successful at differentiating source side ambiguous
words. However, when domain shifts, all models
decline in performance and the BERT-fused model
is no exception. Previous work has proven that
pre-training on large scale datasets can improve
out-of-domain model robustness (Hendrycks et al.,
2019; Mathis et al., 2021). It seems that this poten-
tial is not fully exploited in cross-lingual settings.
We plan to extend this point with the optimized
model RoBERTa (Liu et al., 2019b) in future work.

Figure 2 shows the results for conjunction disam-
biguation. The accuracy of the BERT-fused model
is 96.62, with which we identify a progress of the
BERT-fused model over other systems. This shows
that BERT’s contextualized word embedding is use-
ful to capture clues from sentence structures and
form a generic idea of conjunctions. Conjunction
can impact the structure of the surrounding sen-
tences and is related more to fluency than to ade-
quacy. Therefore it can be more difficult than con-
tent word ambiguity (Popović, 2019). We conclude
that BERT can actually absorb fine-grained relevant
sense information during pre-training, which helps
learn meaningful conjunction sense distinctions.

Table 7 shows the results for coreference trans-
lation. The second column refers to the total ac-
curacy of pronoun translation. The BERT-fused
model achieves the score of 52.46, outperforming
the others by 0.52-1.16 in accuracy. This corre-
sponds to prior studies which show that BERT’s
attention matrices are able to do coreference reso-
lution by effectively encoding coreference signal
in deeper layers and at specific heads (Clark et al.,
2019). The last two columns reflect the models’
performance when antecedent location is inside
or outside the current sentence. The accuracy of
the BERT-fused model ranks the highest in short

Figure 2: Results on conjunction disambiguation test.
We list specific data of each model in Appendix C.

System Total1 Intra2 External3

Standard Transformer 51.78 79.83 44.76

+ back translation (1:0.5) 51.30 82.33 43.54
+ back translation (1:1) 51.65 82.50 43.94
+ back translation (1:2) 51.64 82.08 44.03
+ back translation (1:4) 51.94 82.00 44.42
BERT-fused model 52.46 84.25 44.51
1 Translating English pronoun it to German es, sie, er
2 within segment 3 outside segment

Table 7: Accuracy values for reference pronoun trans-
lation(right part) and antecedent location (left part).

Zh!En En!De
System Triggered BLEU
Standard Transformer 377 29.54
+ back translation (1:0.5) 359 28.85
+ back translation (1:1) 306 27.53
+ back translation (1:2) 334 27.12
+ back translation (1:4) 344 26.76
BERT-fused model 249 30.76

Table 8: Results on idiom translation.

antecedent distance, outperforming others by 2-
5 points, but deteriorates the most sharply as the
distance between the pronoun and its antecedent
increases. Though all models are ineffective in
larger segments, the BERT-fused model even un-
derperforms the baseline by 0.25 points. On the
one hand, these observations prove the ability of
BERT’s deeply bidirectional representation con-
ditioned on both left and right context to capture
intra-sentence dependency which is important for
understanding coreferences. On the other hand, it
also shows BERT’s limitation on long-range fea-
tures in document-level contexts, which is also ob-
served by Joshi et al. (2019). As mentioned earlier
in Section 4.2, one training task of BERT is to pre-
dict the next sentence. We assume that BERT is
better than the standard Transformer to capture re-
lation between two sentences and thus can improve
performance on translation involving long-range
features. Based on our results, however, seemingly
BERT’s potential in capturing sentence relations is
not thoroughly exploited by NMT architectures.

Comparison between Pre-training and Large-scale Back-translation,  [Huang et al ACL 2021]



• Advantages  
– BERT features are fused in all layers 
– Additional attention model adaptively determine how to leverage  

BERT feature  
• Limitions 

– Additional cost including training storage and inference time 
– Why not tune BERT?  

Summary
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• Fine-tuning leads to  performance degradation  on the original task  
• The situation is more severe on NMT fine-tuning 

• High capacity of baseline needs much updating 
• Updating to much makes the model forgets its universal knowledge from 

pre-training

Towards Making Most of BERT for NMT
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Performance on fine-tuning NMT Performance on other BERT tasks 

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]

Why simply incorporating BERT does not work as expectation
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Figure 1: The overall CTNMT with asymptotic distillation and dynamic switch.

representations. GPT-2 can be viewed as a causal
language modeling (CLM) task consisting of a
Transformer LM trained to fit the probability of
a word given previous words in a sentence, while
BERT is designed to pre-train deep bidirectional
representations by jointly conditioning on both left
and right context in all layers. Specifically, from
an input sentence X = {x1 · · · , xm}, BERT or
GPT-2 computes a set of feature vectors H

lm =
{hlm1 · · · , hlmm } upon which we build our NMT
model. In general, there are two ways of using
BERT features, namely fine-tuning approach, and
feature approach. For fine-tuning approach, a sim-
ple classification layer is added to the pre-trained
model and all parameters are jointly fine-tuned
on a downstream task, while the feature approach
keeps the pre-trained parameters unchanged. For
most cases, the performance of the fine-tuning ap-
proach is better than that of the feature approach.

In NMT scenario, the basic procedure is to
pre-train both the NMT encoder and decoder net-
works with language models, which can be trained
on large amounts of unlabeled text data. Then
following a straightforward way to initialize the
NMT encoder with the pre-trained LM and fine-
tune with a labeled dataset. However, this pro-
cedure may lead to catastrophic forgetting, where
the model performance on the language modeling
tasks falls dramatically after fine-tuning (Good-
fellow et al., 2013). With the increasing train-
ing corpus, the benefits of the pre-training will be
gradually diminished after several iterations of the
fine-tuning procedure. This may hamper the mod-
els ability to utilize the pre-trained knowledge. To
tackle this issue, we propose three complementary
strategies for fine-tuning the model.

2.2 Asymptotic Distillation

Addressing the catastrophic forgetting problem,
we propose asymptotic distillation as the minic
regularization to retain the pre-trained informa-
tion. Additionally, due to the large number of pa-
rameters, BERT and GPT-2, for example, cannot
be deployed in resource-restricted systems such
as mobile devices. Fine-tuning with the large
pre-trained model slows NMT throughput during
training by about 9.2x, as showed by (Edunov
et al., 2019). With asymptotic distillation, we can
train the NMT model without additional parame-
ters.

Specifically, the distillation objective is to pe-
nalize the mean-squared-error (MSE) loss be-
tween the hidden states of the NMT model and the
pre-trained LM:

Lkd = �||ĥlm � hl||22 (4)

where the hidden state of the pre-trained language
model ĥlm is fixed and treated as the teacher; hl
is the l

th layer of the hidden states of the NMT
model. For the encoder part, we use the last layer
and find it is better to add the supervision signal to
the top encoder layers.

At training time for NMT, the distilling objec-
tive can be used in conjunction with a traditional
cross-entropy loss:

L = ↵ · Lnmt + (1� ↵) · Lkd (5)

where ↵ is a hyper-parameter that balances the
preference between pre-training distillation and
NMT objective.

2.3 Dynamic Switch

Asymptotic distillation provides an effective way
to integrate the pre-trained information to NMT

Not tuning too much
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• Concerted training framework 
• Rate-scheduled Learning 
• Dynamic Switch  
• Asymptotic Distillation

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]
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• Rate-scheduled Learning rate 
• Gradually increase the learning 

rate of BERT parameters from 0 
to 1 

• Then,   decrease the learning rate 
of BERT parameters from 1 to 0 

• Keep the BERT parameters 
frozen 

Learning rate scalar for BERT parameter

Rate-scheduled learning rate is actually a trade off between fine-
tuning and BERT frozen

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]
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• Dynamic Switch  
• Use a gate to dynamically  

decide which part is more 
important 

• If  is learned to 0, it degrade 
to the NMT model 

• If  is learned to 1, it simply 
act as Bert fine-tune 
approach 

σ

σ

Self Attention

FFN

Self Attention

FFN

Combined
Feature

�σ 1-σ

BERT Encoder

Figure 2: The dynamic switch fashion

tasks. Features extracted from a extremely large
pre-trained LM such as BERT, however, are not
easy for the student Transformer network to fit
since these features can be high-ordered. Mean-
while, directly feeding the features to the NMT
model ignores the information from the original
text, which harms the performance. We thus in-
troduce a dynamic switch strategy to incorporate
the pre-trained model to the original Transformer
NMT model as showed in 2.

Inspired by the success of gated recurrent units
in RNN(Chung et al., 2014), we propose to use
the similar idea of gates to dynamically control
the amount of information flowing from the pre-
trained model as well as the NMT model and
thus balance the knowledge transfer for our NMT
model.

Intuitively, the context gate looks at the input
signals from both the pre-trained model and the
NMT model and outputs a number between 0 and
1 for each element in the input vectors, where
1 denotes “completely transferring this” while 0
denotes “completely ignoring this”. The corre-
sponding input signals are then processed with an
element-wise multiplication before being fed to
the next layer. Formally, a context gate consists
of a sigmoid neural network layer and an element-
wise multiplication operation which is computed
as:

g = �(Wh
lm + Uh

nmt + b) (6)

where �(·) is the logistic sigmoid function, hlm is
the hidden state of the pre-trained language model,
and h

nmt is the hidden state of the original NMT.
Then, we consider integrating the NMT model and
pre-trained language model as:

h = g � h
lm + (1� g)� h

nmt (7)

where � is an element-wise multiplication. If g is
set to 0, the network will degrade to the traditional

T	" T

0.25

0. 50

0.00

0.75

1.00

Figure 3: The slanted triangular learning rate schedule
used for ⌘lm.

NMT model; if g is set to 1, the network will sim-
ply act as the fine-tuning approach.

2.4 Rate-scheduled learning

We also propose a rate-scheduled learning strat-
egy, as an important complement, to alleviate the
catastrophic forgetting problem. Instead of us-
ing the same learning rate for all components of
the model, rate-scheduled learning strategy allows
us to tune each component with different learning
rates. Formally, the regular stochastic gradient de-
scent (SGD) update of a models parameters ✓ at
time step t can be summarized as the following
formula:

✓t = ✓t�1 � ⌘r✓L(✓),
where ⌘ is the learning rate. For discrimina-
tive fine-tuning, we group the parameters into
{✓lm, ✓

nmt}, where ✓
lm and ✓

nmt contain the pa-
rameters of the pre-trained language model and the
NMT model respectively. Similarly, we obtain the
corresponding learning rate {⌘lm, ⌘

nmt}.
The SGD update with drate-scheduled learning

strategy is then the following:

✓
lm
t = ✓

lm
t�1 � ⌘

lmr✓lmL(✓lm) (8)
✓
nmt
t = ✓

nmt
t�1 � ⌘

nmtr✓nmtL(✓nmt) (9)

We would like the model first to quickly con-
verge the NMT parameters. Then we jointly train
both the NMT and LM parameters with modest
steps. Finally, we only refine the NMT parame-
ters to avoid forgetting the pre-trained knowledge.
Using the same learning rate or an annealed learn-
ing rate throughout training is not the best way to
achieve this behavior. Inspired by (Howard and
Ruder, 2018; Smith, 2017), we employ slanted tri-

angular learning rates policy which first increases
linearly and then decreases gradually after a spec-
ified epoch, i.e., there is a “short increase” and a
“long decay”. More specifically, the learning rate
of pre-trained parameters ⌘

lm is then defined as

Not tuning too much

Dynamic Switch  is more flexible than rate-scheduled learning rate

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



58

Not tuning too much

• Asymptotic Distillation  
• The pre-trained BERT serves as a 

teacher network while the encoder of 
the NMT model serves as a student 

• Minimize MSE loss of hidden states 
between NMT encoder and BERT to 
retain the pre-trained information 

• Use a hyper-parameter to balances the 
preference between pre-training 
distillation and NMT objective

BERT 
Encoder

NMT 
Encoder

Distillation 

Teacher Student

ℒKD = hbert − hnmt
2

Distillation Without introducing of additional parameters!

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]
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• Three strategies can independently  work well on WMT14 En-De, En-Fr and 
WMT18 En-Zh 

• CTNMT base model achieves even better results than Transformer big model

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



• CTNMT  outperforms fine-tuning on all training steps  
• The performance gaps is enlarged  as the fine-tuning steps increasing 

Not tuning too much
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Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



• Advantage 
– Simple and effective, obtains +3 BLEU on WMT14 en-de benchmark 
– Three methods can be used separately or jointly  

• Limitation 
– Introducing pre-training method for decoder is  promising but still difficult 
– Cross attention is import but not pre-trained

Summary

61

System Architecture En-De En-Fr En-Zh
Existing systems

Vaswani et al. (2017) Transformer base 27.3 38.1 -
Vaswani et al. (2017) Transformer big 28.4 41.0 -
Lample and Conneau (2019) Transformer big + Fine-tuning 27.7 - -
Lample and Conneau (2019) Transformer big + Frozen Feature 28.7 - -
Chen et al. (2018) RNMT+ + MultiCol 28.7 41.7 -

Our NMT systems
CTNMT Transformer (base) 27.2 41.0 37.3
CTNMT Rate-scheduling 29.7 41.6 38.4
CTNMT Dynamic Switch 29.4 41.4 38.6
CTNMT Asymptotic Distillation 29.2 41.6 38.3
CTNMT + ALL 30.1 42.3 38.9

Table 1: Case-sensitive BLEU scores on English-German, English-French and English-Chinese translation. The
best performance comes from the fusion of rate-scheduling, dynamic switch and asymptotic distillation.

performance. And with only Asymptotic Distil-
lation we still outperform MultiCol without addi-
tional parameters.

4 Results and Analysis

The results on English-German and English-
French translation are presented in Table 1. We
compare CTNMT with various other systems in-
cluding Transformer and previous state-of-the-art
pre-trained LM enhanced model. As observed by
Edunov et al. (2019), Transformer big model with
fine-tuning approach even falls behind the base-
line. They then freeze the LM parameters during
fine-tuning and achieve a few gains over the strong
transformer big model. This is consistent with
our intuition that fine-tuning on the large dataset
may lead to degradation of the performance. In
CTNMT, we first evaluate the effectiveness of the
proposed three strategies respectively. Clearly,
these method achieves almost 2 BLEU score im-
provement over the state-of-the-art on the English-
German task for the base network. In the case
of the larger English-French task, we obtain 1.2
BLEU improvement for the base model. In the
case of the English-Chinese task, we obtain 1.6
BLEU improvement for the baseline model. More
importantly, the combination of these strategies
finally gets an improvement over the best single
strategy with roughly 0.5 BLEU score. We will
then give a detailed analysis as followings.

4.1 Encoder v.s. Decoder

As shown in Table 2, pre-trained language model
representations are most effective when super-

Models En!De BLEU

BERT Enc 29.2
BERT Dec 26.1
GPT-2 Enc 27.7
GPT-2 Dec 27.4

Table 2: Ablation of asymptotic distillation on the en-
coder and the decoder of NMT.

vised on the encoder part but less effective on
the decoder part. As BERT contains bidirectional
information, pre-training decoder may lead in-
consistencies between the training and the infer-
ence. The GPT-2 Transformer uses constrained
self-attention where every token can only attend
to context to its left, thus it is natural to introduce
GPT-2 to the NMT decoder. While there are still
no more significant gains obtained in our experi-
ments. One possible reason is that the decoder is
not a typical language model, which contains the
information from source attention. We will leave
this issue in the future study.

4.2 BERT v.s. GPT-2

We compare BERT with GPT-2(Radford et al.,
2019, 2018) on WMT 2014 English-German cor-
pus. As shown in Table 2, BERT added encoder
works better than GPT-2. The experiments sug-
gest that bidirectional information plays an impor-
tant role in the encoder of NMT models. While for
the decoder part, GPT-2 is a more priority choice.
In the following part, we choose BERT as the pre-
trained LM and apply only for the encoder part.

❌ ❌

✔ ❌

Encoder Decoder

GPT

BERT

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



• Cross attention plays a crucial 
role in NMT 

• Pre-trained language models, 
such as BERT and GPT, have 
none 

• This mismatch between the 
generation models and 
conditional generation models 
makes the pre-trained model 
usage for translation decoder 
pretty tricky

Decode has cross attention but not GPT
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Multilingual Translation via Grafting Pre-trained NLP Models

Anonymous EMNLP submission

Abstract

Pre-trained models like BERT or GPT attract001
extensive attention recently. Large-scale self-002
supervised training with monolingual data im-003
proves many NLP tasks, including machine004
translation. However, the architecture mis-005
match in cross-attention limits the usage of006
pre-trained models for translation decoder. To007
meet seq2seq tasks, the structure of pre-trained008
models is usually modified. In this paper, we009
propose GraftNet, maintaining the original ar-010
chitectures of the pre-trained encoder and de-011
coder and graft them into the translation model.012
For universality and generalization, we also ex-013
tend the training to multilingual NMT. With014
multiple monolingual data for pre-training and015
multiple parallel data for grafting, we maxi-016
mally take advantage of the usage of all the017
data. Experiments show that we achieve the018
best results comparing with related methods.019

1 Introduction020

In recent years, pre-trained models achieve signif-021

icant progress in all kinds of NLP tasks (Devlin022

et al., 2019; Radford et al., 2019). Among them,023

combining with neural machine translation (NMT)024

is also explored by several attempts (Yang et al.,025

2020a; Zhu et al., 2020b; Rothe et al., 2020). The026

pre-training and fine-tuning style becomes an im-027

portant alternative to take advantage of monolin-028

gual data (Yang et al., 2020c,b).029

However, though many works successfully gain030

improvements by loading encoder/decoder param-031

eters from BERT-like pre-trained encoders (Zhu032

et al., 2020b; Guo et al., 2020), they do not achieve033

satisfactory results with loading decoder param-034

eters from GPT-like pre-trained decoders (Yang035

et al., 2020a; Rothe et al., 2020). Theoretically, the036

well-trained decoder model like GPT should bring037

better generation ability to the translation model.038

We suggest the outcome may be attributed to the039

architecture mismatch.040

mBERT 
(Representation)

mGPT 
(Generation)

Output

Grafting 
(Transduction)

Cross 
Attention

Self Attention

Feed-forward 
Network 

Feed-forward 
Network 

Self Attention

?

Pre-trained Models Translation Decoder

Figure 1: Taking the popular architecture Trans-
former (Vaswani et al., 2017) as an example, the trans-
lation model has a “cross-attention” sub-layer, while
pre-trained models have none.

Pre-trained models are usually (masked) lan- 041

guage models. They predict the current word only 042

based on the internal context while the translation 043

decoder has to capture the source context. Specifi- 044

cally, the decoder in NMT has a “cross-attention” 045

sub-layer that plays a transduction role (Bahdanau 046

et al., 2015), while pre-trained models have none, 047

as is in Figure 1. This mismatch between the gen- 048

eration models and conditional generation models 049

makes the pre-trained model usage for translation 050

decoder pretty tricky. 051

Therefore, some previous works manually insert 052

cross-attention sub-layer or adapters (Rothe et al., 053

2020; Ma et al., 2020; Guo et al., 2020). However, 054

the extra implantation may influence the ability of 055

the pre-trained model. Other works try to avoid 056

this problem by directly pre-training a seq2seq 057

model and conduct fine-tuning (Tang et al., 2020; 058

Yang et al., 2020b; Luo et al., 2020). However, 059

the pre-training objective is usually a variant of 060

auto-encoding (Song et al., 2019; Liu et al., 2020), 061

which is different from the downstream translation 062

objective and may not achieve adequate improve- 063

ments (Lin et al., 2020). 064

1



• The Bronze Age 
– NMT initialized with word2vec [ACL 2017, NAACL 2018, AI 2020]  

– NMT initialized  with language model [EMNLP 2017] 
• BERT fusion 

– BERT Incorporating  methods [ICLR 2020, AAAI 2020a] 

– BERT Tuning methods [AAAI 2020b] 
• Unified sequence to sequence pre-training 

– MASS: Masked  Sequence-to-Sequence Pre-training [ICML 2019] 
– BART: Denoising Sequence-to-Sequence Pre-training [ACL 2020]

PART2: Monolingual Pre-training for NMT

63



• MASS is carefully designed to jointly pre-train the 
encoder and decoder

 
• Mask k consecutive tokens (segment) 

– Force the decoder to attend on the source representations, i.e., 
encoder-decoder attention 

– Develop the decoder with the ability of language modeling

 MASS: Pre-train for Sequence to Sequence Generation

64 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



MASS vs. BERT/GPT
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MASS vs. BERT/GPT

K=1 K=mK=mK=m

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



Unsupervised NMT
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Unsupervised NMT 

XLM: Cross-lingual language model pretraining, CoRR 2019

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



Low-resource NMT

67 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



• Advantages 
– Unified sequence-to-sequence pretraining which jointly pretrains encoder, 

decoder and cross attention 
– Achieves improvements on zero-shot / unsupervised NMT 

• Limitions 
– No experiments on rich resource NMT 
– Pretraing objective inconsistent with NMT, e.g. monolingual v.s. multilingual  

Summary

68

Summary

• MASS jointly pre-trains the encoder-attention-decoder framework for 
sequence to sequence based language generation tasks

• MASS achieves significant improvements over the baselines without pre-
training or with other pre-training methods on zero/low-resource NMT, 
text summarization and conversational response generation.

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



• Standard sequence-to-sequence Transformer architecture 
• Trained by corrupting documents and then optimizing a reconstruction 

loss 
• Allows to apply any type of document corruption. 

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, 
Translation, and Comprehension  

69

Bidirectional 
Encoder

A  _  C  _  E 

B       D    

(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.

Autoregressive 
Decoder

A  B  C  D  E

<s> A  B  C  D  
(b) GPT: Tokens are predicted auto-regressively, meaning
GPT can be used for generation. However words can only
condition on leftward context, so it cannot learn bidirec-
tional interactions.

Autoregressive 
Decoder

Bidirectional 
Encoder

A  B  C  D  E

A  _  B  _  E         <s> A  B  C  D  
(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.
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(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
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(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.
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WMT Romanian-English benchmark.
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lection of training objectives (Liu et al., 2019). We find
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mance across the full range of tasks we consider.

2 Model
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It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
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we optimize the negative log likelihood of the original
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former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART
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Unlike existing denoising autoencoders, which are tai-
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case, where all information about the source is lost,
BART is equivalent to a language model.
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English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We
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Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]



• Replace BART’s encoder embedding layer with a new randomly initialized encoder 
• The new encoder uses a separate vocabulary from the original BART mode 
• First, freeze BART parameters and only update the randomly initialized source 

encoder. Then, jointly tuning with a few steps.
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Pre-trained 
Decoder

Pre-trained 
Encoder

label

A  B  C  D  E <s> A  B  C  D  E
(a) To use BART for classification problems, the same
input is fed into the encoder and decoder, and the repre-
sentation from the final output is used.

Randomly 
Initialized Encoder

    α   β   γ   δ   ε

Pre-trained  
Decoder

Pre-trained 
Encoder

A  B  C  D  E

<s> A  B  C  D  

(b) For machine translation, we learn a small additional
encoder that replaces the word embeddings in BART. The
new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

re-implement strong pre-training approaches recently
proposed for discriminative and generation tasks. We
aim, as much as possible, to control for differences un-
related to the pre-training objective. However, we do
make minor changes to the learning rate and usage of
layer normalisation in order to improve performance
(tuning these separately for each objective). For refer-
ence, we compare our implementations with published
numbers from BERT, which was also trained for 1M
steps on a combination of books and Wikipedia data.
We compare the following approaches:

Language Model Similarly to GPT (Radford et al.,
2018), we train a left-to-right Transformer language
model. This model is equivalent to the BART decoder,
without cross-attention.

Permuted Language Model Based on XLNet (Yang
et al., 2019), we sample 1/6 of the tokens, and gener-
ate them in a random order autoregressively. For con-
sistency with other models, we do not implement the
relative positional embeddings or attention across seg-
ments from XLNet.

Masked Language Model Following BERT (Devlin
et al., 2019), we replace 15% of tokens with [MASK]
symbols, and train the model to independently predict
the original tokens.

Multitask Masked Language Model As in UniLM
(Dong et al., 2019), we train a Masked Language
Model with additional self-attention masks. Self at-
tention masks are chosen randomly in with the follow
proportions: 1/6 left-to-right, 1/6 right-to-left, 1/3 un-
masked, and 1/3 with the first 50% of tokens unmasked
and a left-to-right mask for the remainder.

Masked Seq-to-Seq Inspired by MASS (Song et al.,
2019), we mask a span containing 50% of tokens,
and train a sequence to sequence model to predict the
masked tokens.

For the Permuted LM, Masked LM and Multitask
Masked LM, we use two-stream attention (Yang et al.,
2019) to efficiently compute likelihoods of the output
part of the sequence (using a diagonal self-attention
mask on the output to predict words left-to-right).

We experiment with (1) treating the task as a stan-
dard sequence-to-sequence problem, where the source
input to the encoder and the target is the decoder out-
put, or (2) adding the source as prefix to the target in
the decoder, with a loss only on the target part of the
sequence. We find the former works better for BART
models, and the latter for other models.

To most directly compare our models on their ability
to model their fine-tuning objective (the log likelihood
of the human text), we report perplexity in Table 1.

4.2 Tasks

SQuAD (Rajpurkar et al., 2016)a an extractive ques-
tion answering task on Wikipedia paragraphs. Answers
are text spans extracted from a given document context.
Similar to BERT (Devlin et al., 2019), we use concate-
nated question and context as input to the encoder of
BART, and additionally pass them to the decoder. The
model includes classifiers to predict the start and end
indices of each token.

MNLI (Williams et al., 2017), a bitext classification
task to predict whether one sentence entails another.
The fine-tuned model concatenates the two sentences
with appended an EOS token, and passes them to both
the BART encoder and decoder. In contrast to BERT,
the representation of the EOS token is used to classify
the sentences relations.

ELI5 (Fan et al., 2019), a long-form abstractive ques-
tion answering dataset. Models generate answers con-
ditioned on the concatenation of a question and sup-
porting documents.

XSum (Narayan et al., 2018), a news summarization
dataset with highly abstractive summaries.

ConvAI2 (Dinan et al., 2019), a dialogue response
generation task, conditioned on context and a persona.

CNN/DM (Hermann et al., 2015), a news summa-
rization dataset. Summaries here are typically closely
related to source sentences.

4.3 Results

Results are shown in Table 1. Several trends are clear:

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]



• Results on IWSLT 2016 En-
>Ro augmented with back-
translation data 

• 6 layer of additional  
transformer encoder to 
encoding Romania 
representation.  

• *MASS reports unsupervised  
results

Results on NMT
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35

36.25

37.5

38.75

40

Ro->En

*MASS Baseline BART BERT-fused
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• Multilingual fused pre-training 
– Cross-lingual Language Model Pre-training [NeurIPS, 2019]  
– Alternating Language Modeling Pre-training [AAAI, 2020] 
– XLM-T: Cross-lingual Transformer Encoders  

• Multilingual sequence to sequence pre-training 
– mBART [TACL, 2020] 
– CSP [EMNLP, 2020] 
– mRASP & mRASP2 [EMNLP, 2020] [ACL, 2021] 

– LaSS: Learning language-specific sub-network via pre-training & 
fine-tuning [ACL, 2021]

PART 3: Multilingual  Pre-training for NMT
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Multi-lingual Pre-training for NMT
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• Data scarcity for low/zero resource languages. 
• Transfer knowledge between languages. 



Cross-lingual Language Model Pretraining
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Why learning cross-lingual representations? 

2

1 2

43

This is great.
C’est super.
Das ist toll.

Learning cross-lingual representation 

Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



Similar to BERT, but in many languages… 
Multilingual representations emerge from a single model trained 
on many languages 

Multiple masked language model (MLM)

81

Mult. Masked Language Modeling (MLM)

.. multilingual representations emerge from a single MLM trained on many languages.

4

Multilingual Masked language modeling pretraining

Similar to BERT, we pretrain a Transformer model with MLM but in many languages:

Devlin et al. – BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding (+ mBERT)
Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



MLM is unsupervised,  but TLM leverages parallel data… 
Encourage the model to learn cross-lingual context when predicting 

Translation language model (TLM)
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Translation Language Modeling (TLM)

Multilingual MLM is unsupervised, but we leverage parallel data with TLM:

5

Translation language modeling (TLM) pretraining

.. to encourage the model to leverage cross-lingual context when making predictions.
Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]
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Results on Unsupervised Machine Translation

8

Initialization is key in unsupervised MT to bootstrap the iterative BT process

Embedding layer initialization
is essential for neural unsupervised MT (*)

Full Transformer model initialization
significantly improves performance (+7 BLEU)

(*) Lample et al. – Phrase-based and neural unsupervised machine translation (EMNLP 2018)
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Full model pretrained (MLM)

Full model pretrained (CLM)

Embeddings pretrained

BLEU

Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



• Pre-training is 
important for translation  

– Pre-training both encoder 
and decoder improves  

– MLM is better than CLM 
– Back translation + Pre-

training achieve the best 

Results on supervised machine translation
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Results on Supervised Machine Translation

9

We also show the importance of pretraining for generation

• Pretraining both the encoder and 
decoder improves BLEU score

• MLM better than LM pretraining

• Back-translation + pretraining 
leads to the best BLEU score

• Pretraining is more important 
when supervised data is small

20 24 28 32 36 40

Full model pretrained (MLM)

Full model pretrained (CLM)

No pretraining

without back-translation with back-translation

Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



• Adding more languages improves performance on low-
resource languages due to positive knowledge transfer 

• Sampling batches more often in some languages improves 
performance in these languages but decrease performance in 
other languages (capacity allocation problem)

Ablation study
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• Cross-lingual language model pre-training is very 
effective for NMT 

• Pre-training reduces the gap between unsupervised 
and supervised MT 

• Encourage knowledge transfer across languages is 
promising 

Summary
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• ALM extend TLM in a sentence, which alternately predicts words of 
different languages 

• ALM can capture the rich cross-lingual context of words and phrases

Alternating Language Modeling for Cross-Lingual Pre-Training  
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Abstract

Language model pre-training has achieved success in many
natural language processing tasks. Existing methods for
cross-lingual pre-training adopt Translation Language Model
to predict masked words with the concatenation of the source
sentence and its target equivalent. In this work, we intro-
duce a novel cross-lingual pre-training method, called Al-
ternating Language Modeling (ALM). It code-switches sen-
tences of different languages rather than simple concatena-
tion, hoping to capture the rich cross-lingual context of words
and phrases. More specifically, we randomly substitute source
phrases with target translations to create code-switched sen-
tences. Then, we use these code-switched data to train ALM
model to learn to predict words of different languages. We
evaluate our pre-training ALM on the downstream tasks of
machine translation and cross-lingual classification. Exper-
iments show that ALM can outperform the previous pre-
training methods on three benchmarks.1

Introduction
Recently language model pre-training methods, including
ELMo (Peters et al. 2018), GPT (Radford et al. 2018),
GPT2 (Radford et al. 2019), BERT (Devlin et al. 2019),
and UniLM (Dong et al. 2019), have achieved impres-
sive results on various natural language processing tasks
such as question-answering (Min, Seo, and Hajishirzi 2017;
Yang et al. 2019a), machine reading comprehension (Salant
and Berant 2018; Yu et al. 2018) and natural language infer-
ence (Tay, Luu, and Hui 2018). More recently, XLM (Lam-
ple and Conneau 2019) has extended this approach to cross-
lingual pre-training, and proven successful in applying lan-
guage model pre-training in the cross-lingual setting.

Existing methods for supervised cross-lingual pre-
training adopt a cross-lingual language model objective,
called Translation Language Model (TLM). It makes use of
parallel data by predicting the masked words with concate-
nation of the sentence and its translation. In this way, the

∗Contribution during internship at Microsoft Research Asia.
†Corresponding author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code can be found at https://github.com/zddfunseeker/ALM.

⍻⌀㒯䖃↲ⳤ坋↧

澜濕澝澔濌激濁

濖濴濿濿瀆澳濹瀂瀅澳濹瀅濸瀆濻澳濼瀁濷瀈瀆瀇瀅濼濴濿澳濴濶瀇濼瀂瀁

濴濶瀇濼瀂瀁濖濴濿濿瀆 濹瀂瀅

澜濖澝澔澵激濁

澷濜濝濢濙濧濙澔濨濣濟濙濢
澹濢濛濠濝濧濜澔濨濣濟濙濢

㒯 䖃 ↲ⳤ

Figure 1: Example of Translation Language Model and Al-
ternating Language Model.

cross-lingual pre-training model can learn the relationship
between languages.

In this work, we propose a novel cross-lingual language
model, which alternately predicts words of different lan-
guages. Figure 1 shows an example of the proposed Alter-
nating Language Model (ALM). Different from XLM, the
input sequence of ALM is mixed with different languages,
so it can capture the rich cross-lingual context of words and
phrases. Moreover, it forces the language model to predict
one language conditioned on the context of the other lan-
guage. Therefore, it can minor the gap between the embed-
dings of the source language and the target languages, which
is beneficial for the cross-lingual setting.

Based on Alternating Language Model, we introduce a
new cross-lingual pre-training method. More specifically,
we take the Transformer model (Vaswani et al. 2017) as
the backbone model. Then, we construct the training ex-
amples for pre-training by replacing the phrases with their
translation of the other language. Finally, we pre-train the
Transformer model with the constructed examples using the
masked language model objective. The pre-trained model
can be used to further fine-tune the downstream cross-
lingual tasks.

To verify the effectiveness of the proposed method, we
evaluate our pre-training method on machine translation and
cross-lingual classification. Experiments show that ALM
can outperform the previous pre-training methods on three
benchmark datasets.

The contributions of this work are as follows:
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Translation Language Modeling (TLM)

Multilingual MLM is unsupervised, but we leverage parallel data with TLM:

5

Translation language modeling (TLM) pretraining

.. to encourage the model to leverage cross-lingual context when making predictions.
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Figure 2: Overview of our ALM cross-lingual pre-training method. Given a pair of bilingual sentences, we yield a set of cross-
lingual sentences. These sentences are used to pre-train the Transformer encoder which predicts an English masked word or a
Chinese one.

• We propose a novel cross-lingual language model, which
alternately predicts words of different languages.

• We introduce a new cross-lingual pre-training method
based on the proposed cross-lingual language model,
which can be further fine-tuned on downstream tasks.

• Experiments show that ALM outperforms the previous
pre-training methods on the benchmark datasets for ma-
chine translation and cross-lingual text classification.

Cross-Lingual Pre-Training
Cross-lingual pre-training trains a model that can be fur-
ther fine-tuned to improve downstream tasks by making use
of monolingual data and bilingual data. XLM is a recently
proposed model that achieves success in cross-lingual pre-
training. It consists of two unsupervised models that relies
on monolingual data, and a supervised model that relies on
bilingual data. These three models of XLM are Causal Lan-
guage Model (CLM), Masked Language Model (MLM), and
Translation Language Model (TLM), respectively.

Unsupervised Language Modeling
CLM recurrently predicts the next word given the previous
context, which is the typical objective of language modeling.
GPT (Radford et al. 2018) is the first pre-training model to
adopt CLM, and GPT-2 (Radford et al. 2019) further proves
the success of CLM for pre-training.

CLM only makes use of the uni-directional context. Dif-
ferent from CLM, MLM uses bidirectional contextual infor-
mation. It randomly masks some tokens during training and
predicts the identity of the masked word. BERT (Devlin et
al. 2019) is the first to propose this model and use it for pre-
training. Different from the BERT, XLM (Lample and Con-
neau 2019) uses an arbitrary number of sentences (truncated
at 256 tokens) instead of pairs of sentences, and it samples
the masked tokens according to a multinomial distribution,
whose weights are proportional to the square root of their
invert frequencies.

Supervised Language Modeling
XLM also proposes an additional objective that can make
use of bilingual data called TLM. TLM concatenates paral-
lel sentences as training samples. Similar to MLM, it ran-
domly masks words of concatenated sentences, so that it can
leverage both words in source language and target language
translation by predicting the masked words. Moreover, TLM
leverages target sentences to predict source words when the
source context is insufficient to predict these words.

TLM makes use of bilingual data by concatenating sen-
tences of two languages, so it can learn the relationship be-
tween languages. In this work, we mainly focus on improv-
ing the supervised pre-training model. We also show that the
proposed model can be applied to unsupervised settings in
the following section.

Alternating Language Model
We propose Alternating Language Model (ALM) to alter-
nately predict words of different languages. In this section,
we present the details of ALM.

Code-Switched Sequence
Given a bilingual sentence pair (X,Y ) with the source
sentence X = {x1, x2, ..., xN} and the target translation
Y = {y1, y2, ..., yM}, where N and M are the lengths of
the source and target sentences, we create the code-switched
sequence U by composing the phrases of X and Y , where
U={u1, u2, .., uL} with the length L.

In details, for each phrase U[i,j], it comes from either
source phrase X[a,b] or target phrase Y[c,d] where the con-
straint is that these two phrases are the linguistic translation
counterpart in the parallel sentence (X , Y ), 1 ≤ a ≤ b ≤ N
and 1 ≤ c ≤ d ≤ M . We denote the proportion of the source
words in the alternating language sequence U as α.

Specifically, the constituent of U can be illustrated into
four categories:
• Monolingual source language: that is α = 0.
• Monolingual target language: that is α = 1.
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• Dataset 
– Original parallel data to generate 20 times code-switched sentences 
– Separately obtain the alternating language sentences of source 

language and target language,  which are 40 times than original 
data 

– Totally, 1.5 billion code-switched sentences are used for pre-training 
• Model 

– Transformer big 
– Reload the parameters of ALT for both encoder and decoder. The 

cross-lingual attention parameters are randomly initialized.

Training details
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• mBERT:   extends the BERT model to different languages  
• XLM:  the most related work. The results are implemented with released code. 
• Mass:  set the fragment length k as 50% of the total number of masked tokens in 

the sentence. 

Results
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En → De BLEU(%)

Transformer (Vaswani et al. 2017) 28.40
ConvS2S (Gehring et al. 2017) 25.16
Weighted Transformer (Ahmed, Keskar, and Socher 2017) 28.90
Layer-wise Transformer (He et al. 2018) 29.01
RNMT+ (Chen et al. 2018) 28.50

mBERT (Devlin et al. 2019) 28.64
MASS (Song et al. 2019) 28.92
XLM (Lample and Conneau 2019) 28.88

ALM (this work) 29.22

Table 1: Results on WMT14 English-German machine
translation task.

De → En BLEU(%)

Transformer (Vaswani et al. 2017) 34.49
LightConv (Wu et al. 2019) 34.80
DynamicConv (Wu et al. 2019) 35.20
Advsoft (Wang, Gong, and Liu 2019) 35.18
Layer-wise Transformer (He et al. 2018) 35.07

mBERT (Devlin et al. 2019) 34.82
MASS (Song et al. 2019) 35.14
XLM (Lample and Conneau 2019) 35.22

ALM (this work) 35.53

Table 2: Results on IWSLT14 German-English machine
translation task.

translation tasks. Table 1 and Table 2 show that our ALM
has significant improvements over baselines without pre-
training or with pre-training methods.

In Table 1, we report the performance of ALM and the
baseline models in the WMT14 English-German machine
translation dataset. Transformer is an important baseline,
and it obtains 28.40 in BLEU score. We also compare ALM
with the convolutional baseline ConvS2S, which achieves
25.16. Weighted Transformer and Layer-wise Transformer
are two methods to improve the Transformer model, and
they get 28.90 and 29.01 in terms of BLEU score. RNMT+
combines the recurrent structure and the multi-head atten-
tion components, which yields an improvement to 28.50
BLEU score. Our ALM significantly outperforms these
baseline models. We also compare our model with three
state-of-the-art pre-training models. mBERT and MASS
are unsupervised pre-training models. They achieve 28.64
BLEU score and 28.92 BLEU score, respectively. XLM is
a mixture of unsupervised and supervised pre-training mod-
els, achieving 28.88 BLEU score. Our ALM reaches 29.22
BLEU score, yielding an improvement of +0.58, +0.30, and
+0.34 BLEU scores.

In Table 2, we report the performance of ALM and
the baseline models in IWSLT14 German-English machine
translation dataset. We first compare our ALM with the su-
pervised models without pre-training. Transformer and its
variant Layer-wise Transformer achieves 34.49 and 35.07
in terms of BLEU score. The convolution-based models,
LightConv and DynamicConv, achieve 34.80 and 35.20, re-
spectively. Advsoft gets a BLEU score of 35.18. ALM out-
performs these baselines, achieving 35.53 in BLEU score.

We also compare ALM with three pre-training baselines.
It shows that our ALM obtains the best performance and
reaches 35.53 BLEU score in this task, outperforming the
previous baseline mBERT, MASS, and XLM by +0.71 and
+0.39, and +0.31 in terms of BLEU score.

In general, our ALM could achieve significant improve-
ments over all baseline models on two translation tasks. As
our method pre-trains the encoder on a large scale cross-
lingual corpus, the word representations and encoder could
acquire sufficient cross-lingual information. For example,
the target phrase can see both its source and target context.
This cross-lingual context is helpful for target word genera-
tion and understanding the source sentence in a cross-lingual
way.

Fine-Tuning on Cross-Lingual Classification
We fine-tune the pre-trained ALM model on XNLI dataset
to evaluate the effectiveness of our model. We build a lin-
ear classifier on the top of the pre-trained ALM to project
the first hidden state of ALM output into the probabili-
ties of each class. We concatenate premise and hypothe-
sis, and feed them into ALM. We evaluate the performance
of the fine-tuned model in 15 XNLI languages. Follow-
ing previous work (Lample and Conneau 2019), we eval-
uate the model in three different settings: “TRANSLATE-
TRAIN”, “TRANSLATE-TEST”, and “CROSS-LINGUAL
TEST”. The evaluation metric is the accuracy of the pre-
dicted NLI class.

Baselines We compare our methods with three strong
baselines, including a supervised method without pre-
training, and two pre-training methods:
• Conneau: Conneau (Conneau et al. 2018) proposes a

BiLSTM model to set up a baseline for XNLI. We report
the scores directly from their paper.

• Multilingual BERT (Devlin et al. 2019): Multilingual
BERT (mBERT) extends the BERT model to different
languages, which is also a strong baseline.

• XLM (Lample and Conneau 2019): XLM is the state-of-
the-art model for cross-lingual pre-training. We report the
results of XLM directly from their paper.

Details We fine-tune our ALM with the Adam optimizer
(Kingma and Ba 2015) with β1 = 0.9 and β2 = 0.997.
We tune the learning rates based on the performance on the
validation set, and the learning rates are set to 5× 10−6. We
set the batch size to 24, and we limit the sentences up to
256 tokens. We set a rate of dropout 0.15 of last layer. We
evaluate our model for every 1000 sentences.

Results Table 3 shows the experimental results of our
proposed ALM and the baseline models. Following the
work of XNLI (Conneau et al. 2018), we evaluate these
models in three different settings: “TRANSLATE-TRAIN”,
“TRANSLATE-TEST”, and “CROSS-LINGUAL TEST”.
In the setting “TRANSLATE-TRAIN”, we translate the
training set of the English MultiNLI dataset into each XNLI
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En → De BLEU(%)

Transformer (Vaswani et al. 2017) 28.40
ConvS2S (Gehring et al. 2017) 25.16
Weighted Transformer (Ahmed, Keskar, and Socher 2017) 28.90
Layer-wise Transformer (He et al. 2018) 29.01
RNMT+ (Chen et al. 2018) 28.50

mBERT (Devlin et al. 2019) 28.64
MASS (Song et al. 2019) 28.92
XLM (Lample and Conneau 2019) 28.88

ALM (this work) 29.22

Table 1: Results on WMT14 English-German machine
translation task.

De → En BLEU(%)

Transformer (Vaswani et al. 2017) 34.49
LightConv (Wu et al. 2019) 34.80
DynamicConv (Wu et al. 2019) 35.20
Advsoft (Wang, Gong, and Liu 2019) 35.18
Layer-wise Transformer (He et al. 2018) 35.07

mBERT (Devlin et al. 2019) 34.82
MASS (Song et al. 2019) 35.14
XLM (Lample and Conneau 2019) 35.22

ALM (this work) 35.53

Table 2: Results on IWSLT14 German-English machine
translation task.

translation tasks. Table 1 and Table 2 show that our ALM
has significant improvements over baselines without pre-
training or with pre-training methods.

In Table 1, we report the performance of ALM and the
baseline models in the WMT14 English-German machine
translation dataset. Transformer is an important baseline,
and it obtains 28.40 in BLEU score. We also compare ALM
with the convolutional baseline ConvS2S, which achieves
25.16. Weighted Transformer and Layer-wise Transformer
are two methods to improve the Transformer model, and
they get 28.90 and 29.01 in terms of BLEU score. RNMT+
combines the recurrent structure and the multi-head atten-
tion components, which yields an improvement to 28.50
BLEU score. Our ALM significantly outperforms these
baseline models. We also compare our model with three
state-of-the-art pre-training models. mBERT and MASS
are unsupervised pre-training models. They achieve 28.64
BLEU score and 28.92 BLEU score, respectively. XLM is
a mixture of unsupervised and supervised pre-training mod-
els, achieving 28.88 BLEU score. Our ALM reaches 29.22
BLEU score, yielding an improvement of +0.58, +0.30, and
+0.34 BLEU scores.

In Table 2, we report the performance of ALM and
the baseline models in IWSLT14 German-English machine
translation dataset. We first compare our ALM with the su-
pervised models without pre-training. Transformer and its
variant Layer-wise Transformer achieves 34.49 and 35.07
in terms of BLEU score. The convolution-based models,
LightConv and DynamicConv, achieve 34.80 and 35.20, re-
spectively. Advsoft gets a BLEU score of 35.18. ALM out-
performs these baselines, achieving 35.53 in BLEU score.

We also compare ALM with three pre-training baselines.
It shows that our ALM obtains the best performance and
reaches 35.53 BLEU score in this task, outperforming the
previous baseline mBERT, MASS, and XLM by +0.71 and
+0.39, and +0.31 in terms of BLEU score.

In general, our ALM could achieve significant improve-
ments over all baseline models on two translation tasks. As
our method pre-trains the encoder on a large scale cross-
lingual corpus, the word representations and encoder could
acquire sufficient cross-lingual information. For example,
the target phrase can see both its source and target context.
This cross-lingual context is helpful for target word genera-
tion and understanding the source sentence in a cross-lingual
way.

Fine-Tuning on Cross-Lingual Classification
We fine-tune the pre-trained ALM model on XNLI dataset
to evaluate the effectiveness of our model. We build a lin-
ear classifier on the top of the pre-trained ALM to project
the first hidden state of ALM output into the probabili-
ties of each class. We concatenate premise and hypothe-
sis, and feed them into ALM. We evaluate the performance
of the fine-tuned model in 15 XNLI languages. Follow-
ing previous work (Lample and Conneau 2019), we eval-
uate the model in three different settings: “TRANSLATE-
TRAIN”, “TRANSLATE-TEST”, and “CROSS-LINGUAL
TEST”. The evaluation metric is the accuracy of the pre-
dicted NLI class.

Baselines We compare our methods with three strong
baselines, including a supervised method without pre-
training, and two pre-training methods:
• Conneau: Conneau (Conneau et al. 2018) proposes a

BiLSTM model to set up a baseline for XNLI. We report
the scores directly from their paper.

• Multilingual BERT (Devlin et al. 2019): Multilingual
BERT (mBERT) extends the BERT model to different
languages, which is also a strong baseline.

• XLM (Lample and Conneau 2019): XLM is the state-of-
the-art model for cross-lingual pre-training. We report the
results of XLM directly from their paper.

Details We fine-tune our ALM with the Adam optimizer
(Kingma and Ba 2015) with β1 = 0.9 and β2 = 0.997.
We tune the learning rates based on the performance on the
validation set, and the learning rates are set to 5× 10−6. We
set the batch size to 24, and we limit the sentences up to
256 tokens. We set a rate of dropout 0.15 of last layer. We
evaluate our model for every 1000 sentences.

Results Table 3 shows the experimental results of our
proposed ALM and the baseline models. Following the
work of XNLI (Conneau et al. 2018), we evaluate these
models in three different settings: “TRANSLATE-TRAIN”,
“TRANSLATE-TEST”, and “CROSS-LINGUAL TEST”.
In the setting “TRANSLATE-TRAIN”, we translate the
training set of the English MultiNLI dataset into each XNLI
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Figure 4: Visualization of word embedding in Transformer
and ALM.

ALM can outperform Transformer model by a large margin.
With the increase of parallel data, the margin gets narrow
because of the upper bound of the model capacity. It con-
cludes that ALM pre-training can benefit the performance
of Transformer model especially when the training samples
are not sufficient.

Related Work
Pre-training and transfer learning are widely used in many
tasks of natural language processing. ELMo (Peters et al.
2018) is proposed as a kind of deep contextualized word
representation that is pre-trained in the large scale corpus
and can be transferred to other tasks. Universal Language
Model Fine-tuning (ULMFiT) (Howard and Ruder 2018)
is an effective transfer learning method that can be ap-
plied to any task in NLP, and includes techniques that are
key for fine-tuning a language model. BERT (Devlin et al.
2019) achieves state-of-the-art performance among various
pre-training approaches to monolingual NLP tasks. Further-
more, XLM and MASS (Song et al. 2019) obtain more
great success in language understanding by pre-training. Un-
like BERT that pre-trains only the encoder or the decoder,
MASS is carefully designed to pre-train the encoder and de-
coder jointly by predicting the fragment of the sentence that
is masked on the encoder side and predict the masked to-
kens in the decoder side. By masking the input tokens of
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Figure 5: Results of ALM vs Transformer fine-tuning on
low-resource data.

the decoder that are unmasked in the source side, MASS
can force the decoder to rely more on the source repre-
sentation other than the previous tokens in the target side
for the next token prediction by pre-training with monolin-
gual data. More recently, XLNet (Yang et al. 2019b) pro-
poses a generalized auto-aggressive pre-training method that
enables learning bidirectional contexts by maximizing the
expected likelihood over all permutations of the factoriza-
tion order. RoBERTa (Liu et al. 2019) presents a replication
study of BERT pre-training that carefully measures the im-
pact of many key hyperparameters and training data size.

Conclusions
In this work, we propose a novel cross-lingual pre-training
method, called Alternating Language Modeling (ALM).
First, we randomly substitute the source phrases with the tar-
get equivalents to create code-switched sentences. Then, we
use these code-switched data to train ALM model to learn to
predict words of different languages. We evaluate our pre-
training ALM on the downstreams tasks of machine transla-
tion and cross-lingual classification. Experiments show that
ALM can outperform the previous pre-training methods on
three benchmark datasets. In the future work, we will ex-
plore the effect of code-switched sentences being used for
MASS-like pre-training method.
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cludes that ALM pre-training can benefit the performance
of Transformer model especially when the training samples
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representation that is pre-trained in the large scale corpus
and can be transferred to other tasks. Universal Language
Model Fine-tuning (ULMFiT) (Howard and Ruder 2018)
is an effective transfer learning method that can be ap-
plied to any task in NLP, and includes techniques that are
key for fine-tuning a language model. BERT (Devlin et al.
2019) achieves state-of-the-art performance among various
pre-training approaches to monolingual NLP tasks. Further-
more, XLM and MASS (Song et al. 2019) obtain more
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like BERT that pre-trains only the encoder or the decoder,
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sentation other than the previous tokens in the target side
for the next token prediction by pre-training with monolin-
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use these code-switched data to train ALM model to learn to
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Abstract

Multilingual machine translation enables a sin-
gle model to translate between different lan-
guages. Most existing multilingual machine
translation systems adopt a randomly initial-
ized Transformer backbone. In this work, in-
spired by the recent success of language model
pre-training, we present XLM-T, which initial-
izes the model with an off-the-shelf pretrained
cross-lingual Transformer encoder and fine-
tunes it with multilingual parallel data. This
simple method achieves significant improve-
ments on a WMT dataset with 10 language
pairs and the OPUS-100 corpus with 94 pairs.
Surprisingly, the method is also effective even
upon the strong baseline with back-translation.
Moreover, extensive analysis of XLM-T on un-
supervised syntactic parsing, word alignment,
and multilingual classification explains its ef-
fectiveness for machine translation.1

1 Introduction

Multilingual neural machine translation (NMT) en-
ables a single model to translate between multiple
language pairs, which has drawn increasing atten-
tion in the community (Firat et al., 2016a; Ha et al.,
2016; Johnson et al., 2017; Aharoni et al., 2019;
Fan et al., 2020). Recent work shows that multilin-
gual machine translation achieves promising results
especially for low-resource and zero-resource ma-
chine translation (Firat et al., 2016b; Zoph et al.,
2016; Sen et al., 2019; Zhang et al., 2020).

Pre-training-then-fine-tuning framework (Devlin
et al., 2019; Liu et al., 2019; Dong et al., 2019;
Song et al., 2019; Raffel et al., 2020) has shown
substantial improvements on many natural lan-
guage processing (NLP) tasks by pre-training a
model on a large corpus and fine-tuning it on the
downstream tasks. Pre-training multilingual lan-
guage models (Conneau and Lample, 2019; Con-

1The code will be at https://aka.ms/xlm-t.

Encoder

Decoder 

Off-the-shelf
Pretrained

Cross-lingual
Encoder

Multilingual NMT

Initialize
Fine-tune Multilingual 

Parallel Data

Figure 1: Framework of XLM-T. We use off-the-shelf
pretrained cross-lingual encoders (such as XLM-R) to
initialize both the encoder and decoder of the multilin-
gual NMT model. Then we fine-tune the model on mul-
tilingual parallel data.

neau et al., 2020; Chi et al., 2020a,b; Xue et al.,
2020) obtains significant performance gains on a
wide range of cross-lingual tasks, which is natu-
rally applicable to multilingual machine transla-
tion where the representations are shared among
different languages. Moreover, pre-training has
great potential in efficiently scaling up multilin-
gual NMT, while existing methods, such as back-
translation (Sennrich et al., 2016), are expensive in
the multilingual setting.

Most existing work (Conneau and Lample, 2019;
Song et al., 2019; Lewis et al., 2020) on leveraging
pretrained models for machine translation mainly
lies in the bilingual setting. How to effectively
and efficiently use these existing pretrained mod-
els for multilingual machine translation is not fully
explored. Liu et al. (2020) introduce a sequence-
to-sequence denoising auto-encoder (mBART) pre-
trained on large-scale monolingual corpora in many
languages. Lin et al. (2020) propose to pretrain
the multilingual machine translation models with
a code-switching objective function. However,
this model requires a large-scale parallel data for
pre-training, which hinders its application to low-
resource and zero-resource languages.

In this work, we present a simple and effective
method XLM-T that initializes multilingual ma-
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X ! En Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Train on Original Parallel Data (Bitext)

Bilingual NMT 36.2 28.5 40.2 19.2 17.5 19.7 29.8 14.1 15.1 9.3 23.0

Many-to-One 34.8 29.0 40.1 21.2 20.4 26.2 34.8 22.8 23.8 19.2 27.2
XLM-T 35.9 30.5 41.6 22.5 21.4 28.4 36.6 24.6 25.6 20.4 28.8

Many-to-Many 35.9 29.2 40.0 21.1 20.4 26.3 35.5 23.6 24.3 20.6 27.7
XLM-T 35.5 30.0 40.8 22.1 21.5 27.8 36.5 25.3 25.0 20.6 28.5

Train on Original Parallel Data and Back-Translation Data (Bitext+BT)

(Wang et al., 2020) 35.3 31.9 45.4 23.8 22.4 30.5 39.1 28.7 27.6 23.5 30.8
Many-to-One 35.9 32.6 44.1 24.9 23.1 31.5 39.7 28.2 27.8 23.1 31.1
XLM-T 36.0 33.1 44.8 25.4 23.9 32.7 39.8 30.1 28.8 23.6 31.8

(Wang et al., 2020) 35.3 31.2 43.7 23.1 21.5 29.5 38.1 27.5 26.2 23.4 30.0
Many-to-Many 35.7 31.9 43.7 24.2 23.2 30.4 39.1 28.3 27.4 23.8 30.8
XLM-T 36.1 32.6 44.3 25.4 23.8 32.0 40.3 29.5 28.7 24.2 31.7

Table 1: X ! En test BLEU for bilingual, many-to-one, and many-to-many models on WMT-10. On the top are
the models trained with original parallel data, while the bottom are combined with back-translation. The languages
are ordered from high-resource (left) to low-resource (right).

Different from WMT-10, massively multilingual
NMT suffers from weak capacity (Zhang et al.,
2020). Therefore, for the baseline of the OPUS-
100 dataset, we adopt the same architecture and
vocabulary as XLM-T but randomly initializing the
parameters so that the numbers of parameters are
the same. We tie the weights of encoder embed-
dings, decoder embeddings, and output layers in
all experiments.

3.3 Training and Evaluation

We train all models with Adam Optimizer (Kingma
and Ba, 2015) with �1 = 0.9 and �2 = 0.98.
The learning rate is among {3e-4, 5e-4} with a
warming-up step of 4,000. The models are trained
with the label smoothing cross-entropy, and the
smoothing ratio is 0.1. We set the dropout of atten-
tion layers as 0.0, while the rest of the dropout rate
is 0.1. We limit the source length and the target
length to be 256. For the WMT-10 dataset, the
batch size is 4,096 and we accumulate the gradi-
ents by 16 batches. For the OPUS-100 dataset, we
set the batch size as 2,048 and the gradients are
updated every 32 batches. All experiments on the
WMT-10 dataset are conducted on 8 V100 GPUs,
while the experiments on OPUS-100 are on a DGX-
2 machine with 16 V100 GPUs.

During testing, we use the beam search algo-
rithm with a beam size of 5. We set the length

penalty as 1.0. The last 5 checkpoints are averaged
for evaluation. We report the case-sensitive detok-
enized BLEU using sacreBLEU6 (Post, 2018).

4 Results

4.1 WMT-10
We study the performance of XLM-T in three mul-
tilingual translation scenarios, including many-to-
English (X ! En), English-to-many (En ! X), and
many-to-many (X ! Y). For many-to-many, we
use a combination of English-to-many and many-to-
English as the training data. We compare XLM-T
with both the bilingual NMT and the multilingual
NMT models to verify the effectiveness.

Table 1 reports the results on the X ! En test
sets. Compared with the bilingual baseline, the mul-
tilingual models achieve much better performance
on the low-resource languages and are worse on
the high-resource languages. In general, the mul-
tilingual baseline outperforms the bilingual base-
lines by an average of +4.2 points. In the many-
to-English scenario, XLM-T achieves significant
improvements over the multilingual baseline across
all 10 languages. The average gain is +1.6 points.
In the many-to-many scenario, the gain becomes
narrow, but still reaches +0.8 points over the multi-
lingual baseline. We further combine the parallel

6BLEU+case.mixed+lang.{src}-
{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.4.14

• The multilingual models achieve much better performance on the low-resource languages and 
are worse on the high-resource languages 

• XLM-T achieves significant improvements over the multilingual baseline across all 10 languages 
• In the back-translation setting, XLM-T can further improve this strong baseline
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Different from WMT-10, massively multilingual
NMT suffers from weak capacity (Zhang et al.,
2020). Therefore, for the baseline of the OPUS-
100 dataset, we adopt the same architecture and
vocabulary as XLM-T but randomly initializing the
parameters so that the numbers of parameters are
the same. We tie the weights of encoder embed-
dings, decoder embeddings, and output layers in
all experiments.

3.3 Training and Evaluation

We train all models with Adam Optimizer (Kingma
and Ba, 2015) with �1 = 0.9 and �2 = 0.98.
The learning rate is among {3e-4, 5e-4} with a
warming-up step of 4,000. The models are trained
with the label smoothing cross-entropy, and the
smoothing ratio is 0.1. We set the dropout of atten-
tion layers as 0.0, while the rest of the dropout rate
is 0.1. We limit the source length and the target
length to be 256. For the WMT-10 dataset, the
batch size is 4,096 and we accumulate the gradi-
ents by 16 batches. For the OPUS-100 dataset, we
set the batch size as 2,048 and the gradients are
updated every 32 batches. All experiments on the
WMT-10 dataset are conducted on 8 V100 GPUs,
while the experiments on OPUS-100 are on a DGX-
2 machine with 16 V100 GPUs.

During testing, we use the beam search algo-
rithm with a beam size of 5. We set the length

penalty as 1.0. The last 5 checkpoints are averaged
for evaluation. We report the case-sensitive detok-
enized BLEU using sacreBLEU6 (Post, 2018).

4 Results

4.1 WMT-10
We study the performance of XLM-T in three mul-
tilingual translation scenarios, including many-to-
English (X ! En), English-to-many (En ! X), and
many-to-many (X ! Y). For many-to-many, we
use a combination of English-to-many and many-to-
English as the training data. We compare XLM-T
with both the bilingual NMT and the multilingual
NMT models to verify the effectiveness.

Table 1 reports the results on the X ! En test
sets. Compared with the bilingual baseline, the mul-
tilingual models achieve much better performance
on the low-resource languages and are worse on
the high-resource languages. In general, the mul-
tilingual baseline outperforms the bilingual base-
lines by an average of +4.2 points. In the many-
to-English scenario, XLM-T achieves significant
improvements over the multilingual baseline across
all 10 languages. The average gain is +1.6 points.
In the many-to-many scenario, the gain becomes
narrow, but still reaches +0.8 points over the multi-
lingual baseline. We further combine the parallel

6BLEU+case.mixed+lang.{src}-
{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.4.14

• The multilingual models achieve much better performance on the low-resource languages and 
are worse on the high-resource languages 

• XLM-T achieves significant improvements over the multilingual baseline across all 10 languages 
• In the back-translation setting, XLM-T can further improve this strong baseline
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• Generally, the improvements are smaller than X → En 
• The multilingual part of En → X is at the decoder side, which XLM-R is not 

an expert in.  

•

En ! X Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Train on Original Parallel Data (Bitext)

Bilingual NMT 36.3 22.3 40.2 15.2 16.5 15.0 23.0 12.2 13.3 7.9 20.2

One-to-Many 34.2 20.9 40.0 15.0 18.1 20.9 26.0 14.5 17.3 13.2 22.0
XLM-T 34.8 21.4 39.9 15.4 18.7 20.9 26.6 15.8 17.4 15.0 22.6

Many-to-Many 34.2 21.0 39.4 15.2 18.6 20.4 26.1 15.1 17.2 13.1 22.0
XLM-T 34.2 21.4 39.7 15.3 18.9 20.6 26.5 15.6 17.5 14.5 22.4

Train on Original Parallel Data and Back-Translation Data (Bitext+BT)

(Wang et al., 2020) 36.1 23.6 42.0 17.7 22.4 24.0 29.8 19.8 19.4 17.8 25.3
One-to-Many 36.8 23.6 42.9 18.3 23.3 24.2 29.5 20.2 19.4 13.2 25.1
XLM-T 37.3 24.2 43.6 18.1 23.7 24.2 29.7 20.1 20.2 13.7 25.5

(Wang et al., 2020) 35.8 22.4 41.2 16.9 21.7 23.2 29.7 19.2 18.7 16.0 24.5
Many-to-Many 35.9 22.9 42.2 17.5 22.5 23.4 28.9 19.8 19.1 14.5 24.7
XLM-T 36.6 23.9 42.4 18.4 22.9 24.2 29.3 20.1 19.8 12.8 25.0

Table 2: En ! X test BLEU for bilingual, many-to-one, and many-to-many models on WMT-10. On the top are
the models trained with original parallel data, while the bottom are combined with back-translation. The languages
are ordered from high-resource (left) to low-resource (right).

Models X ! En En ! X

High Med Low Avg WR High Med Low Avg WR

Best System from (Zhang et al., 2020) 30.3 32.6 31.9 31.4 - 23.7 25.6 22.2 24.0 -

Many-to-Many 31.5 35.1 36.0 33.6 ref 25.6 30.5 30.5 28.2 ref
XLM-T 32.4 35.9 36.9 34.5 89.4 26.1 30.9 31.0 28.6 75.5

Table 3: X ! En and En ! X test BLEU for high/medium/low resource language pairs in many-to-many setting
on OPUS-100 test sets. The BLEU scores are average across all language pairs in the respective groups. “WR”:
win ratio (%) compared to ref.

data with back-translation. Back-translation results
in a large gain of +3.9 BLEU score over the base-
line. Therefore, back-translation is a strong base-
line for multilingual NMT. In the back-translation
setting, XLM-T can further improve this strong
baseline by a significant gain of +0.7 points, show-
ing the effectiveness of XLM-T. As for the many-
to-many setting, the improvement is even larger,
reaching a difference of +0.9 points. We compare
XLM-T with Wang et al. (2020)’s method. Be-
sides back-translation, they use the monolingual
data (i.e. the target side of back-translation data)
with two tasks of Mask Language Model (MLM)
and Denoising AutoEncoder (DAE). It shows that
XLM-T can outperform this method in both the
many-to-one and many-to-many settings.

Table 2 summarizes the results on the En ! X
test sets. Similar to the results of X ! En, the
multilingual NMT improves the average BLEU
score of the bilingual baseline, while XLM-T beats

the multilingual baseline by +0.6 points. As for
the many-to-many and back-translation scenarios,
XLM-T yields the increments of +0.4 points, +0.4
points, and +0.3 points, respectively. Compared
with Wang et al. (2020)’s method, XLM-T has sim-
ilar performance in the one-to-many setting, and a
slightly improvement of +0.5 BLEU in the many-
to-many scenario. The performance of XLM-T in
Gu is worse than that of Wang et al. (2020). We
conjecture that this is related to the implementation
details of data sampling. Generally, the improve-
ments are smaller than X ! En. We believe it is
because the multilingual part of En ! X is at the
decoder side, which XLM-R is not an expert in.
How to improve En ! X with pretrained models
is a promising direction to explore in the future.

4.2 OPUS-100
To further verify the effectiveness of XLM-T on
massively multilingual machine translation, we

XLM-T: Scaling up Multilingual Machine Translation with Pretrained Cross-lingual Transformer Encoders  [Ma et al]



• Multilingual fused pre-training 
– Cross-lingual Language Model Pre-training [NeurIPS, 2019]  
– Alternating Language Modeling Pre-training [AAAI, 2020] 
– XLM-T: Cross-lingual Transformer Encoders  

• Multilingual sequence to sequence pre-training 
– mBART [TACL, 2020] 
– CSP [EMNLP, 2020] 
– mRASP & mRASP2 [EMNLP, 2020] [ACL, 2021] 

– LaSS: Learning language-specific sub-network via pre-training & 
fine-tuning [ACL, 2021]
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Where did __ from ? </s> Who __ I __ </s> <En> <En> Who am I ? </s> Where did I come from ? </s> 

Who am I ? </s> Where did I come from ? </s> <En> 

Who am I ? </s> <En> 

Transformer Encoder Transformer Decoder

ᐺ�΅�抑�Ҙ </s> <Ja>

<Ja> ᐺ�΅�抑�Ҙ </s> 

Transformer Encoder Transformer Decoder

 BB�ก෭�̶ </s> ͳ�BB��V!�<Ja> <Ja> ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> 

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

Multilingual Denoising Pre-Training  (mBART) Fine-tuning on Machine Translation

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

:HOO�WKHQ�����V! See you tomorrow .</s> <En>

<En> :HOO�WKHQ�����V! See you tomorrow .</s> 

Doc-MT

Sent-MT

Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks
(right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id
token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Noise function Following Lewis et al. (2019),
we use two types of noise in g. We first remove
spans of text and replace them with a mask to-
ken. We mask 35% of the words in each instance
by random sampling a span length according to a
Poisson distribution (� = 3.5). We also permute
the order of sentences within each instance. The
decoder input is the original text with one posi-
tion offset. A language id symbol <LID> is used
as the initial token to predict the sentence. It is also
possible to use other noise types, such as those in
Lample et al. (2018c), but we leave the exploration
of the optimal noising strategy to future work.

Instance format For each instance of a batch,
we sample a language id symbol <LID>, and
we pack as many consecutive sentences as pos-
sible sampled from the corresponding corpus of
<LID>, until either it hits the document boundary
or reaches the 512 max token length. Sentences
in the instance are separated by the end of sen-
tence (</S>) token. Then, we append the selected
<LID> token to represent the end of this instance.
Pre-training at “multi-sentence” level enables us to
work on both sentence and document translation.

Optimization Our full model (including 25 lan-
guages) is trained on 256 Nvidia V100 GPUs
(32GB) for 500K steps. The total batch size
is around 128K tokens per GPU, matching
BART (Lewis et al., 2019) configuration. We use
the Adam optimizer (✏ = 1e�6, �2 = 0.98) and
linear learning rate decay scheduling. The total
training time was approximately 2.5 weeks. We
started the training with dropout 0.1 and reduced it
to 0.05 at 250K steps and 0 at 400K steps. All ex-
periments are done with Fairseq (Ott et al., 2019).

2.3 Pre-trained Models
To better measure the effects of different levels
of multilinguality during pre-training, we built a
range of models as follows:

• mBART25 We pre-train a model on all 25 lan-
guages, using the setting described in §2.2.

• mBART06 To explore the effect of pre-training
on related languages, we pretrain a model on a
subset of six European languages: Ro, It, Cs, Fr,
Es and En. For a fair comparison, we use ⇠ 1/4
of the mBART25 batch size, which allows our
model to have the same number of updates per
language during pre-training.

• mBART02 We pre-train bilingual models, us-
ing English and one other language for four
language pairs: En-De, En-Ro, En-It. We use a
batch size of ⇠ 1/12 of that in the mBART25.

• BART-En/Ro To help establish baseline per-
formance levels, we also train monolingual
BART models on the same En and Ro corpus
only.

• Random As additional baselines, we will also
include a comparison with a model randomly
initialized without pre-training for each trans-
lation task. Since the sizes of different down-
stream datasets vary, we always grid-search the
hyper-parameters (architecture, dropout, etc.) to
find the best non-pretrained configuration.

All models use the same vocabulary (§2.1). Not
all tokens will frequently occur in all pre-training
corpora, but later experiments show that this large
vocabulary can improve generalization in multilin-
gual settings even for unseen languages.

• Multilingual denoising pre-training (25 languages) 
– Sentence permutation  
–Word-span masking 

• Fine-tuning on MT with special language id
Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 



• Data: CC25 corpus 
– CC25 includes 25 languages from 

different families and with varied amounts 
of text from Common Crawl (CC) 

– Rebalanced the corpus by up/down-
sampling text 

 
– Sentence Piece which includes 25,000 

subwords 
– Noisy function follows BART

We also show that mBART enables new types
of transfer across language pairs. For example,
fine-tuning on bi-text in one language pair (e.g.,
Korean-English) creates a model that can trans-
late from all other languages in the monolingual
pre-training set (e.g., Italian-English), with no fur-
ther training. We also show that languages not
in pre-training corpora can benefit from mBART,
strongly suggesting that the initialization is at least
partially language universal. Finally, we present a
detailed analysis of which factors contribute the
most to effective pre-training, including the num-
ber of languages and their overall similarity.

2 Multilingual Denoising Pre-training

We use a large-scale common crawl (CC) corpus
(§2.1) to pre-train BART models (§2.2). Our ex-
periments in the later sections involve finetuning a
range of models pre-trained on different subsets of
the CC languages §2.3).

2.1 Data: CC25 corpus
Datasets We pre-train on a subset of 25 lan-
guages – CC25 – extracted from the Common
Crawl (CC) (Wenzek et al., 2019; Conneau et al.,
2019)1. CC25 includes languages from different
families and with varied amounts of text (Table 1).
Following Lample and Conneau (2019), we re-
balanced the corpus by up/down-sampling text
from each language i with a ratio �i:

�i =
1

pi
· p↵iP

i p
↵
i

, (1)

where pi is the percentage of each language in CC-
25. We use the smoothing parameter ↵ = 0.7.

Pre-processing We tokenize with a sentence-
piece model (SPM, Kudo and Richardson, 2018)
learned on the full CC data that includes 250, 000
subword tokens. While not all of these languages
are used for pre-training, this tokenization sup-
ports fine-tuning on additional languages. We do
not apply additional preprocessing, such as true-
casing or normalizing punctuation/characters.

2.2 Model: mBART
Our models follow the BART (Lewis et al., 2019)
sequence-to-sequence pre-training scheme, as re-
viewed in this section. While BART was only pre-
trained for English, we systematically study the ef-
fects of pre-training on different sets of languages.

1https://commoncrawl.org

Code Language Tokens/M Size/GB

En English 55608 300.8
Ru Russian 23408 278.0
Vi Vietnamese 24757 137.3
Ja Japanese 530 (*) 69.3
De German 10297 66.6
Ro Romanian 10354 61.4
Fr French 9780 56.8
Fi Finnish 6730 54.3
Ko Korean 5644 54.2
Es Spanish 9374 53.3
Zh Chinese (Sim) 259 (*) 46.9
It Italian 4983 30.2
Nl Dutch 5025 29.3
Ar Arabic 2869 28.0
Tr Turkish 2736 20.9
Hi Hindi 1715 20.2
Cs Czech 2498 16.3
Lt Lithuanian 1835 13.7
Lv Latvian 1198 8.8
Kk Kazakh 476 6.4
Et Estonian 843 6.1
Ne Nepali 237 3.8
Si Sinhala 243 3.6
Gu Gujarati 140 1.9
My Burmese 56 1.6

Table 1: Languages and Statistics of the CC25 Cor-
pus. A list of 25 languages ranked with monolingual
corpus size. Throughout this paper, we replace the lan-
guage names with their ISO codes for simplicity. (*)
Chinese and Japanese corpus are not segmented, so the
tokens counts here are sentences counts

Architecture We use a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2017), with 12 layers of encoder and 12 layers
of decoder with model dimension of 1024 on 16
heads (⇠ 680M parameters). We include an addi-
tional layer-normalization layer on top of both the
encoder and decoder, which we found stabilized
training at FP16 precision.

Learning Our training data covers K languages:
D = {D1, ...,DK} where each Di is a collection
of monolingual documents in language i. We (1)
assume access to a noising function g, defined be-
low, that corrupts text, and (2) train the model to
predict the original text X given g(X). More for-
mally, we aim to maximize L✓:

L✓ =
X

Di2D

X

X2Di

logP (X|g(X); ✓) , (2)

where X is an instance in language i and the dis-
tribution P is defined by the Seq2Seq model.

Dataset
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We also show that mBART enables new types
of transfer across language pairs. For example,
fine-tuning on bi-text in one language pair (e.g.,
Korean-English) creates a model that can trans-
late from all other languages in the monolingual
pre-training set (e.g., Italian-English), with no fur-
ther training. We also show that languages not
in pre-training corpora can benefit from mBART,
strongly suggesting that the initialization is at least
partially language universal. Finally, we present a
detailed analysis of which factors contribute the
most to effective pre-training, including the num-
ber of languages and their overall similarity.

2 Multilingual Denoising Pre-training

We use a large-scale common crawl (CC) corpus
(§2.1) to pre-train BART models (§2.2). Our ex-
periments in the later sections involve finetuning a
range of models pre-trained on different subsets of
the CC languages §2.3).

2.1 Data: CC25 corpus
Datasets We pre-train on a subset of 25 lan-
guages – CC25 – extracted from the Common
Crawl (CC) (Wenzek et al., 2019; Conneau et al.,
2019)1. CC25 includes languages from different
families and with varied amounts of text (Table 1).
Following Lample and Conneau (2019), we re-
balanced the corpus by up/down-sampling text
from each language i with a ratio �i:

�i =
1

pi
· p↵iP

i p
↵
i

, (1)

where pi is the percentage of each language in CC-
25. We use the smoothing parameter ↵ = 0.7.

Pre-processing We tokenize with a sentence-
piece model (SPM, Kudo and Richardson, 2018)
learned on the full CC data that includes 250, 000
subword tokens. While not all of these languages
are used for pre-training, this tokenization sup-
ports fine-tuning on additional languages. We do
not apply additional preprocessing, such as true-
casing or normalizing punctuation/characters.

2.2 Model: mBART
Our models follow the BART (Lewis et al., 2019)
sequence-to-sequence pre-training scheme, as re-
viewed in this section. While BART was only pre-
trained for English, we systematically study the ef-
fects of pre-training on different sets of languages.

1https://commoncrawl.org

Code Language Tokens/M Size/GB

En English 55608 300.8
Ru Russian 23408 278.0
Vi Vietnamese 24757 137.3
Ja Japanese 530 (*) 69.3
De German 10297 66.6
Ro Romanian 10354 61.4
Fr French 9780 56.8
Fi Finnish 6730 54.3
Ko Korean 5644 54.2
Es Spanish 9374 53.3
Zh Chinese (Sim) 259 (*) 46.9
It Italian 4983 30.2
Nl Dutch 5025 29.3
Ar Arabic 2869 28.0
Tr Turkish 2736 20.9
Hi Hindi 1715 20.2
Cs Czech 2498 16.3
Lt Lithuanian 1835 13.7
Lv Latvian 1198 8.8
Kk Kazakh 476 6.4
Et Estonian 843 6.1
Ne Nepali 237 3.8
Si Sinhala 243 3.6
Gu Gujarati 140 1.9
My Burmese 56 1.6

Table 1: Languages and Statistics of the CC25 Cor-
pus. A list of 25 languages ranked with monolingual
corpus size. Throughout this paper, we replace the lan-
guage names with their ISO codes for simplicity. (*)
Chinese and Japanese corpus are not segmented, so the
tokens counts here are sentences counts

Architecture We use a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2017), with 12 layers of encoder and 12 layers
of decoder with model dimension of 1024 on 16
heads (⇠ 680M parameters). We include an addi-
tional layer-normalization layer on top of both the
encoder and decoder, which we found stabilized
training at FP16 precision.

Learning Our training data covers K languages:
D = {D1, ...,DK} where each Di is a collection
of monolingual documents in language i. We (1)
assume access to a noising function g, defined be-
low, that corrupts text, and (2) train the model to
predict the original text X given g(X). More for-
mally, we aim to maximize L✓:

L✓ =
X

Di2D

X

X2Di

logP (X|g(X); ✓) , (2)

where X is an instance in language i and the dis-
tribution P is defined by the Seq2Seq model.
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko
Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K
Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-

Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 
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Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
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Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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• Pre-training slightly hurts performance when >25M parallel sentence are 
available.  

• When a significant amount of bi-text data is given, supervised training are 
supposed to wash out the pre-trained weights completely.
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko
Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K
Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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• Test on low resource FLoRes dataset [Guzmán et al., 2019] 
• Use the same monolingual data to generate BT data 
• Initializing the model with mBART25 pre-trained parameters 

improves BLEU scores at each iteration of back translation, resulting 
in new state-of-the-art results in all four translation directions

mBART: Pre-training complementary to BT  
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Figure 2: Pre-training + Back Translation on FLoRes with two iterations of BT.

Pre-training Fine-tuning
Model Data En!Ro Ro!En +BT

Random None 34.3 34.0 36.8

XLM (2019) En Ro - 35.6 38.5
MASS (2019) En Ro - - 39.1
BART (2019) En - - 38.0
XLM-R (2019) CC100 35.6 35.8 -

BART-En En 36.0 35.8 37.4
BART-Ro Ro 37.6 36.8 38.1
mBART02 En Ro 38.5 38.5 39.9
mBART25 CC25 37.7 37.8 38.8

Table 4: Comparison with Other Pre-training Ap-
proaches on WMT16 Ro-En.

amples for tuning. In these settings, unsupervised
translation is more appropriate, see §5.2.

For high resource cases (Table 3), we do not
observe consistent gains, and pre-training slightly
hurts performance when >25M parallel sentence
are available. When a significant amount of bi-text
data is given, we suspect that supervised training
washes out the pre-trained weights completely.

+ Back Translation Back-translation (BT, Sen-
nrich et al., 2016b) is a standard approach to aug-
ment bi-text with target side monolingual data. We
combine our pre-training with BT and test it on
low resource language pairs – En-Si and En-Ne –
using the FLoRes dataset (Guzmán et al., 2019).
For a fair comparison, we use the same mono-
lingual data as (Guzmán et al., 2019) to gener-
ate BT data. Figure 2 shows that initializing the
model with our mBART25 pre-trained parameters
improves BLEU scores at each iteration of back
translation, resulting in new state-of-the-art results
in all four translation directions.

v.s. Other Pre-training Approaches We also
compare our pre-trained models with recent self-
supervised pre-training methods, as shown in Ta-
ble 4. We consider En-Ro translation, the only
pair with established results. Our mBART model

outperforms all the other pre-trained models, both
with and without BT augmentation. We also show
comparisons with the conventional BART model
trained on the same En and Ro data only. Both
have improvements over baselines, while worse
than mBART results, indicating pre-training in a
multilingual setting is essential. Moreover, com-
bining BT leads to additional gains, resulting in a
new state-of-the-art for Ro-En translation.

3.3 Analysis
We also present additional analysis, to better quan-
tify when our pre-training helps.

How many languages should you pre-train on?
We investigate when it is helpful for pre-training
to include languages other than the targeted lan-
guage pair that will be used during fine tuning. Ta-
ble 5 shows performance on four X-En pairs. Pre-
training on more languages helps most when the
target language monolingual data is limited (e.g.
En-My, the size of My is around 0.5% of En).

In contrast, when monolingual data is plenti-
ful (De, Ro), pre-training on multiple languages
slightly hurts the final results (<1 BLEU). In these
cases, additional languages may reduce the ca-
pacity available for each test language. Addition-
ally, the fact that mBART06 performs similar to
mBART02 on Ro-En suggests that pre-training
with similar languages is particularly helpful.

How many pre-training steps are needed? We
plot Ro-En BLEU score v.s. Pre-training steps in
Figure 3, where we take the saved checkpoints (ev-
ery 25K steps) and apply the same fine-tuning pro-
cess described in §3.1. Without any pre-training,
our model overfits and performs much worse than
the baseline. However, after just 25K steps (5% of
training), both models outperform the best base-
line. The models keep improving by over 3 BLEU
for the rest of steps and have not fully con-
verged after 500K steps. mBART25 is consistently



• BART model trained on the same En and Ro data only. Both have improvements over 
baselines, while worse than mBART results, indicating pre-training in a multilingual setting is 
essential. 

• Combining BT leads to additional gains, resulting in a new state-of-the-art for Ro-En translation 
• mBART02 is better than mBART25. The more seems not the better? 

Is pre-training on multilingual better than on single language?
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Figure 2: Pre-training + Back Translation on FLoRes with two iterations of BT.

Pre-training Fine-tuning
Model Data En!Ro Ro!En +BT

Random None 34.3 34.0 36.8

XLM (2019) En Ro - 35.6 38.5
MASS (2019) En Ro - - 39.1
BART (2019) En - - 38.0
XLM-R (2019) CC100 35.6 35.8 -

BART-En En 36.0 35.8 37.4
BART-Ro Ro 37.6 36.8 38.1
mBART02 En Ro 38.5 38.5 39.9
mBART25 CC25 37.7 37.8 38.8

Table 4: Comparison with Other Pre-training Ap-
proaches on WMT16 Ro-En.

amples for tuning. In these settings, unsupervised
translation is more appropriate, see §5.2.

For high resource cases (Table 3), we do not
observe consistent gains, and pre-training slightly
hurts performance when >25M parallel sentence
are available. When a significant amount of bi-text
data is given, we suspect that supervised training
washes out the pre-trained weights completely.

+ Back Translation Back-translation (BT, Sen-
nrich et al., 2016b) is a standard approach to aug-
ment bi-text with target side monolingual data. We
combine our pre-training with BT and test it on
low resource language pairs – En-Si and En-Ne –
using the FLoRes dataset (Guzmán et al., 2019).
For a fair comparison, we use the same mono-
lingual data as (Guzmán et al., 2019) to gener-
ate BT data. Figure 2 shows that initializing the
model with our mBART25 pre-trained parameters
improves BLEU scores at each iteration of back
translation, resulting in new state-of-the-art results
in all four translation directions.

v.s. Other Pre-training Approaches We also
compare our pre-trained models with recent self-
supervised pre-training methods, as shown in Ta-
ble 4. We consider En-Ro translation, the only
pair with established results. Our mBART model

outperforms all the other pre-trained models, both
with and without BT augmentation. We also show
comparisons with the conventional BART model
trained on the same En and Ro data only. Both
have improvements over baselines, while worse
than mBART results, indicating pre-training in a
multilingual setting is essential. Moreover, com-
bining BT leads to additional gains, resulting in a
new state-of-the-art for Ro-En translation.

3.3 Analysis
We also present additional analysis, to better quan-
tify when our pre-training helps.

How many languages should you pre-train on?
We investigate when it is helpful for pre-training
to include languages other than the targeted lan-
guage pair that will be used during fine tuning. Ta-
ble 5 shows performance on four X-En pairs. Pre-
training on more languages helps most when the
target language monolingual data is limited (e.g.
En-My, the size of My is around 0.5% of En).

In contrast, when monolingual data is plenti-
ful (De, Ro), pre-training on multiple languages
slightly hurts the final results (<1 BLEU). In these
cases, additional languages may reduce the ca-
pacity available for each test language. Addition-
ally, the fact that mBART06 performs similar to
mBART02 on Ro-En suggests that pre-training
with similar languages is particularly helpful.

How many pre-training steps are needed? We
plot Ro-En BLEU score v.s. Pre-training steps in
Figure 3, where we take the saved checkpoints (ev-
ery 25K steps) and apply the same fine-tuning pro-
cess described in §3.1. Without any pre-training,
our model overfits and performs much worse than
the baseline. However, after just 25K steps (5% of
training), both models outperform the best base-
line. The models keep improving by over 3 BLEU
for the rest of steps and have not fully con-
verged after 500K steps. mBART25 is consistently
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• Pretraining on more languages helps most when the target 
language monolingual data is limited 

• When monolingual data is plentiful (De, Ro), pre-training on 
multiple languages slightly hurts the final results (<1 BLEU)

How many languages should you pre-train on?
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Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5
mBART06 - 38.5 39.3 -
mBART25 30.5 37.7 39.8 36.9

Table 5: Pretraining Languages on En-X translation.
The size refers to the size of monolingual data for X.
The size of En is shown as reference. All the pretrained
models were controlled to see the same number of En-
glish instances during training.

Models En-My Training Cost
 ! GPU hours

Random (2019) 23.3 34.9 5
+ BT 32.0 37.7 5 + 300 + 350

mBART02 29.1 37.8 300⇠3000 + 40
+ BT 34.9 39.2 -

Table 6: Comparison with Back-Translation on My-En
translation using same mono-lingual data. We also esti-
mate the computational costs for both pre-training and
back-translation based on Nvidia V100 GPUs.

slightly worse than mBART02.

How does the size of bitexts inference the gain
from pre-training? Tables 2 and 3 show that
pre-training consistently improves for low and
medium resource language pairs. To verify this
trend, we plot performance for differing sized sub-
sets of the En-De dataset. More precisely, we take
the full En-De corpus (28M pairs) and randomly
sample 10K, 50K, 100K, 500K, 1M, 5M, 10M
datasets. We compare performance without pre-
training to the mBART02 results, as shown in Fig-
ure 4. The pre-trained model is able to achieve
over 20 BLEU with only 10K training examples,
while the baseline system scores 0. Unsurpris-
ingly, increasing the size of bi-text corpus im-
proves both models. Our pre-trained model con-
sistently outperforms the baseline models, but the
gap reduces with increasing amounts of bi-text, es-
pecially after 10M sentence pairs. This result con-
firms our observation in §3.2 that our pre-training
does not help translation in high-resource pairs.

Is pre-training complementary to BT? Fig-
ure 2 presents that our pre-trained models can
be combined with iterative back-translation (BT)
on additional data, however, it is still not a fair
comparison. Table 6 shows the results when using

Figure 3: Fine-tuning curves for Ro-En along with
Pre-training steps. Both mBART25 and mBART02
outperform the best baseline system after 25K steps.

Figure 4: Fine-tuning curves for En-De along with
size of bitext. The x-axis is on a log scale.

same monolingual data where we use 79M En and
29M My sentences following Chen et al. (2019).

With the same amount of monolingual corpus,
mBART pre-training achieves the same perfor-
mance on En!My as BT, while still 3 BLEU
worse on My!En. We suspect BT benefits from
bigger monolingual data (En). Moreover, combin-
ing mBART02 model with BT, we see further
gains even with same monolingual data. Besides,
we also provide estimated training costs where BT
has a longer pipeline involving training a baseline
system (5h), translating monolingual data (300h)
and formal training (350h). Instead, most of train-
ing costs of mBART lies in the pre-training part
and can be easily adjusted to be more efficient.

3.4 Generalization to Languages NOT in
Pre-training

In this section, we show that mBART can im-
prove performance even with fine tuning for lan-
guages that did not appear in the pre-training cor-
pora, suggesting that the pre-training has language
universal aspects, especially within the parameters
learned at the Transformer layers.

30
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38

40

De Ro It My

mbart02 mbart06 mbart25
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• Without any pre-training, the model overfits and performs much worse than the baseline 
• After just 25K steps (5% of training), both models outperform the best baseline.  
• The models keep improving by over 3 BLEU for the rest of steps and have not fully converged after 

500K steps. 
• The more the better

Analysis: Pre-training steps matters
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Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5
mBART06 - 38.5 39.3 -
mBART25 30.5 37.7 39.8 36.9

Table 5: Pretraining Languages on En-X translation.
The size refers to the size of monolingual data for X.
The size of En is shown as reference. All the pretrained
models were controlled to see the same number of En-
glish instances during training.

Models En-My Training Cost
 ! GPU hours

Random (2019) 23.3 34.9 5
+ BT 32.0 37.7 5 + 300 + 350

mBART02 29.1 37.8 300⇠3000 + 40
+ BT 34.9 39.2 -

Table 6: Comparison with Back-Translation on My-En
translation using same mono-lingual data. We also esti-
mate the computational costs for both pre-training and
back-translation based on Nvidia V100 GPUs.

slightly worse than mBART02.

How does the size of bitexts inference the gain
from pre-training? Tables 2 and 3 show that
pre-training consistently improves for low and
medium resource language pairs. To verify this
trend, we plot performance for differing sized sub-
sets of the En-De dataset. More precisely, we take
the full En-De corpus (28M pairs) and randomly
sample 10K, 50K, 100K, 500K, 1M, 5M, 10M
datasets. We compare performance without pre-
training to the mBART02 results, as shown in Fig-
ure 4. The pre-trained model is able to achieve
over 20 BLEU with only 10K training examples,
while the baseline system scores 0. Unsurpris-
ingly, increasing the size of bi-text corpus im-
proves both models. Our pre-trained model con-
sistently outperforms the baseline models, but the
gap reduces with increasing amounts of bi-text, es-
pecially after 10M sentence pairs. This result con-
firms our observation in §3.2 that our pre-training
does not help translation in high-resource pairs.

Is pre-training complementary to BT? Fig-
ure 2 presents that our pre-trained models can
be combined with iterative back-translation (BT)
on additional data, however, it is still not a fair
comparison. Table 6 shows the results when using

Figure 3: Fine-tuning curves for Ro-En along with
Pre-training steps. Both mBART25 and mBART02
outperform the best baseline system after 25K steps.

Figure 4: Fine-tuning curves for En-De along with
size of bitext. The x-axis is on a log scale.

same monolingual data where we use 79M En and
29M My sentences following Chen et al. (2019).

With the same amount of monolingual corpus,
mBART pre-training achieves the same perfor-
mance on En!My as BT, while still 3 BLEU
worse on My!En. We suspect BT benefits from
bigger monolingual data (En). Moreover, combin-
ing mBART02 model with BT, we see further
gains even with same monolingual data. Besides,
we also provide estimated training costs where BT
has a longer pipeline involving training a baseline
system (5h), translating monolingual data (300h)
and formal training (350h). Instead, most of train-
ing costs of mBART lies in the pre-training part
and can be easily adjusted to be more efficient.

3.4 Generalization to Languages NOT in
Pre-training

In this section, we show that mBART can im-
prove performance even with fine tuning for lan-
guages that did not appear in the pre-training cor-
pora, suggesting that the pre-training has language
universal aspects, especially within the parameters
learned at the Transformer layers.
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• The pre-trained model is able to achieve over 20 BLEU with only 10K training 
examples, while the baseline system scores 0.  

• Unsurprisingly,  mBART consistently outperforms the baseline models, but the gap 
reduces with increasing amounts of bi-text, especially after 10M sentence pairs

Analysis: Perform better on low resource
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Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5
mBART06 - 38.5 39.3 -
mBART25 30.5 37.7 39.8 36.9

Table 5: Pretraining Languages on En-X translation.
The size refers to the size of monolingual data for X.
The size of En is shown as reference. All the pretrained
models were controlled to see the same number of En-
glish instances during training.

Models En-My Training Cost
 ! GPU hours

Random (2019) 23.3 34.9 5
+ BT 32.0 37.7 5 + 300 + 350

mBART02 29.1 37.8 300⇠3000 + 40
+ BT 34.9 39.2 -

Table 6: Comparison with Back-Translation on My-En
translation using same mono-lingual data. We also esti-
mate the computational costs for both pre-training and
back-translation based on Nvidia V100 GPUs.

slightly worse than mBART02.

How does the size of bitexts inference the gain
from pre-training? Tables 2 and 3 show that
pre-training consistently improves for low and
medium resource language pairs. To verify this
trend, we plot performance for differing sized sub-
sets of the En-De dataset. More precisely, we take
the full En-De corpus (28M pairs) and randomly
sample 10K, 50K, 100K, 500K, 1M, 5M, 10M
datasets. We compare performance without pre-
training to the mBART02 results, as shown in Fig-
ure 4. The pre-trained model is able to achieve
over 20 BLEU with only 10K training examples,
while the baseline system scores 0. Unsurpris-
ingly, increasing the size of bi-text corpus im-
proves both models. Our pre-trained model con-
sistently outperforms the baseline models, but the
gap reduces with increasing amounts of bi-text, es-
pecially after 10M sentence pairs. This result con-
firms our observation in §3.2 that our pre-training
does not help translation in high-resource pairs.

Is pre-training complementary to BT? Fig-
ure 2 presents that our pre-trained models can
be combined with iterative back-translation (BT)
on additional data, however, it is still not a fair
comparison. Table 6 shows the results when using

Figure 3: Fine-tuning curves for Ro-En along with
Pre-training steps. Both mBART25 and mBART02
outperform the best baseline system after 25K steps.

Figure 4: Fine-tuning curves for En-De along with
size of bitext. The x-axis is on a log scale.

same monolingual data where we use 79M En and
29M My sentences following Chen et al. (2019).

With the same amount of monolingual corpus,
mBART pre-training achieves the same perfor-
mance on En!My as BT, while still 3 BLEU
worse on My!En. We suspect BT benefits from
bigger monolingual data (En). Moreover, combin-
ing mBART02 model with BT, we see further
gains even with same monolingual data. Besides,
we also provide estimated training costs where BT
has a longer pipeline involving training a baseline
system (5h), translating monolingual data (300h)
and formal training (350h). Instead, most of train-
ing costs of mBART lies in the pre-training part
and can be easily adjusted to be more efficient.

3.4 Generalization to Languages NOT in
Pre-training

In this section, we show that mBART can im-
prove performance even with fine tuning for lan-
guages that did not appear in the pre-training cor-
pora, suggesting that the pre-training has language
universal aspects, especially within the parameters
learned at the Transformer layers.
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• mBART can improve performance even with fine tuning for languages that did not 
appear in the pre-training corpora,  

• Pre-training has language universal aspects, especially within the parameters 
learned at the Transformer layers. 

• The more pre-trained languages the better

Analysis: Generalization to unseen  languages
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Monolingual Nl-En En-Nl Ar-En En-Ar Nl-De De-Nl

Random None 34.6 (-8.7) 29.3 (-5.5) 27.5 (-10.1) 16.9 (-4.7) 21.3 (-6.4) 20.9 (-5.2)

mBART02 En Ro 41.4 (-2.9) 34.5 (-0.3) 34.9 (-2.7) 21.2 (-0.4) 26.1 (-1.6) 25.4 (-0.7)
mBART06 En Ro Cs It Fr Es 43.1 (-0.2) 34.6 (-0.2) 37.3 (-0.3) 21.1 (-0.5) 26.4 (-1.3) 25.3 (-0.8)
mBART25 All 43.3 34.8 37.6 21.6 27.7 26.1

Table 7: Generalization to Unseen Languages Language transfer results, fine-tuning on language-pairs without
pre-training on them. mBART25 uses all languages during pre-training, while other settings contain at least one
unseen language pair. For each model, we also show the gap to mBART25 results.

Experimental Settings We analyze the results
of three pairs: Nl-En, Ar-En and De-Nl using the
pre-trained mBART25, mBART06 and mBART02
(EnRo) models. During pre-training, mBART06
and EnRo Bilingual do not contain Arabic (Ar),
German (De) or Dutch (Nl) data, but all languages
are in mBART25. Both De and Nl are European
languages and are related to En, Ro and other the
languages in mBART06 pre-training data.

Results mBART25 uses all languages during
pre-training, but other settings contain at least one
unseen language. We find large gains from pre-
training on English-Romanian, even when trans-
lating a distantly related unseen language (Arabic)
and two unseen languages (German and Dutch).
The best results are achieved when pre-training in-
cludes both test languages, however pre-training
on other languages is surprisingly competitive.

Unseen Vocabularies Arabic is distantly related
to the languages in mBART02 and mBART06, and
its use of a disjoint character set means that it word
embeddings will be largely untrained. However,
we obtain similar improvements on Ar-En pairs to
those on Nl-En. This result suggests that the pre-
trained Transformer layers learn universal prop-
erties of language that generalize well even with
minimal lexical overlap.

Unseen Source or Target Languages Table 7
shows different performance when the unseen lan-
guages are on the source side, target side, or both
sides. If both sides are unseen, the performance
(in terms of difference from mBART25) is worse
than where at least one language is seen dur-
ing pre-training. Furthermore, although the En-X
pairs perform similarly, mBART06 outperforms
mBART02 by a margin on X-En pairs. Fine-tuning
unseen languages on source side is more difficult,
deserving more extensive future study.

Datasets # Docs # Insts # Sents

WMT19 En-De 77K 171K 3.7M
TED15 Zh-En 1.7K 6.5K 0.2M

Table 8: Statistics for the Document-level Corpus of
WMT19 En-De and TED15 Zh-En. # of instances is
the # of training examples in document model.

4 Document-level Machine Translation

We evaluate mBART on document-level machine
translation tasks, where the goal is to translate seg-
ments of text that contain more than one sentence
(up to an entire document). During pre-training,
we use document fragments of up to 512 tokens,
allowing the models to learn dependencies be-
tween sentences. We show that this pre-training
significantly improves document-level translation.

4.1 Experimental Settings

Datasets We evaluate performance on two com-
mon document-level MT datasets: WMT19 En-De
and TED15 Zh-En (statistics in Table 8). For En-
De, we use the document data from WMT19 to
train our model, without any additional sentence-
level data; Zh-En dataset is from the IWSLT 2014
and 2015 evaluation campaigns (Cettolo et al.,
2012, 2015). Following Miculicich et al. (2018),
we use 2010-2013 TED as the test set.

Pre-processing We use the same pre-processing
as that in pre-training. For each block, sentences
are separated by end of sentence symbols (</S>)
and the entire instance is ended with the specific
language id (<LID>). The numbers of segmented
instances are also shown in Table 8 where on av-
erage, every document is split into 2-4 instances.

Fine-tuning & Decoding We use the same fine-
tuning scheme as for sentence-level translation
(§3.1), without using any task-specific techniques
developed by previous work (Miculicich et al.,

Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 

Nl-De and Ar are not included in the pre-training corpus



• Following the same procedure with UNMT,  but initialize the translation model 
with the pre-trained mBART 

• To avoid simply copying the source text, constrain mBART to only generating 
tokens in target language   

• Achieve very competitive results 
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UNMT with back translation

mBART

Generated En Text

Monolingual Ne Text

mBART

Decode

MLE lossInput

Input
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Monolingual En Text

mBART

Decode

MLE loss Input

Input

mBART

Parallel Hi Text

Parallel En Text

mBART

DecodeMLE loss

Input

Transfer 
(no train)

Ne Text

Input

Generated En Text

(a) (b)

Figure 5: Illustrated frameworks for unsupervised machine translation via (a) back-translation (b) language transfer
where Ne-En is used as an example. For both cases, we initialize from multilingual pre-training (e.g. mBART25).

language into the target language. This is a new
evaluation regime, where we will show that
mBART supports effective transfer, even if the
source language has no bi-text of any form.

In this section, we demonstrate the effectiveness
of multilingual pre-training in unsupervised ma-
chine translation via (1) back-translation ( §5.1)
and (3) language transfer (§5.2). An illustration of
both approaches are presented in Figure 5.

5.1 Unsupervised Machine Translation via
Back-Translation

Datasets We evaluate our pre-trained models on
both similar (En-De, En-Ro) and dissimilar pairs
(En-Ne, En-Si), which are determined by measur-
ing the subword units that are shared between the
source and target languages. We use the same test
sets as the supervised benchmarks §3.1, and di-
rectly use the pre-training data (CC25) for back-
translation to avoid introducing new information.

Learning Following the same procedure de-
scribed in Lample et al. (2018c); Lample and
Conneau (2019), we first initialize the transla-
tion model with the pre-trained weights, and then
learn to predict the monolingual sentences condi-
tioned on source sentences generated by on-the-
fly back-translation (BT). Lample and Conneau
(2019) only pre-train an encoder, so perform addi-
tional de-noising training to learn a seq2seq model
– a step which is unnecessary for mBART’s pre-
trained seq2seq model. However, we do constrain
mBART to only generating tokens in target lan-
guage 4 for the first 1000 steps of on-the-fly BT, to
avoid it simply copying the source text.

Results Table 10 shows the unsupervised trans-
lation results compared with non-pretrained mod-

4We mask out the output probability of predicting tokens
which appear less than 1% in the target monolingual corpus.

els, as well as models with existing pre-training
methods. Our models achieve large gains over
non-pretrained models for all directions, and out-
perform XLM significantly for dissimilar pairs
(En-Ne, En-Si) where the existing approaches
completely fail. For similar pairs, our model also
performs well against XLM and MASS, with the
best numbers for En-X pairs.

5.2 Unsupervised Machine Translation via
Language Transfer

The second case of unsupervised machine transla-
tion assumes the target language appears in a bi-
text corpus with some other source language.

Datasets We only consider X!En translation,
and choose the bitexts of 12 language pairs from
§3.1, covering Indic languages (Ne, Hi, Si, Gu),
European languages (Ro, It, Cs, Nl), East Asian
languages (Zh, Ja, Ko) and Arabic languages (Ar).

Results As illustrated in Figure 5 (b), we take
the pre-trained mBART25 model and finetune on
each language pair, and then directly apply them
to the rest of pairs, as seen in Table 11. We also
present the direct fine-tuning performance (§3) on
the diagonal, for reference. We can always ob-
tain reasonable transferring scores at all pairs over
different fine-tuned models except from Gu-En
where the supervised model completely fails (0.3
BLEU). In some cases, we can achieve similar
(Cs-En) or even much better (Ne-En, Gu-En) re-
sults compared to the supervised results.

As a comparison, we also apply the same proce-
dure on randomly initialized models without pre-
training, which always ends up with ⇡ 0 BLEU.
This indicates that multilingual pre-training is
essential and produces universal representations
across languages, so that once the model learns
to translate one language to En, it learns to trans-

Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 

Model
Similar Pairs Dissimilar Pairs

En-De En-Ro En-Ne En-Si
 !  !  !  !

Random 21.0 17.2 19.4 21.2 0.0 0.0 0.0 0.0
XLM (2019) 34.3 26.4 31.8 33.3 0.5 0.1 0.1 0.1
MASS (2019) 35.2 28.3 33.1 35.2 - - - -

mBART 34.0 29.8 30.5 35.0 10.0 4.4 8.2 3.9

Table 10: Unsupervised MT via Back-Translation. En-De, En-Ro are initialized by mBART02, while En-Ne,
En-Si are initialized by mBART25. Our models are trained on monolingual data used in pre-training.

Fine-tuning Languages
Zh Ja Ko Cs Ro Nl It Ar Hi Ne Si Gu

Domain News TED TED News News TED TED TED News Wiki Wiki Wiki
Te

st
in

g
La

ng
ua

ge
s

Zh 23.7 8.8 9.2 2.8 7.8 7.0 6.8 6.2 7.2 4.2 5.9 0.0
Ja 9.9 19.1 12.2 0.9 4.8 6.4 5.1 5.6 4.7 4.2 6.5 0.0
Ko 5.8 16.9 24.6 5.7 8.5 9.5 9.1 8.7 9.6 8.8 11.1 0.0
Cs 9.3 15.1 17.2 21.6 19.5 17.0 16.7 16.9 13.2 15.1 16.4 0.0
Ro 16.2 18.7 17.9 23.0 37.8 22.3 21.6 22.6 16.4 18.5 22.1 0.0
Nl 14.4 30.4 32.3 21.2 27.0 43.3 34.1 31.0 24.6 23.3 27.3 0.0
It 16.9 25.8 27.8 17.1 23.4 30.2 39.8 30.6 20.1 18.5 23.2 0.0
Ar 5.8 15.5 12.8 12.7 12.0 14.7 14.7 37.6 11.6 13.0 16.7 0.0
Hi 3.2 10.1 9.9 5.8 6.7 6.1 5.0 7.6 23.5 14.5 13.0 0.0
Ne 2.1 6.7 6.5 5.0 4.3 3.0 2.2 5.2 17.9 14.5 10.8 0.0
Si 5.0 5.7 3.8 3.8 1.3 0.9 0.5 3.5 8.1 8.9 13.7 0.0
Gu 8.2 8.5 4.7 5.4 3.5 2.1 0.0 6.2 13.8 13.5 12.8 0.3

Table 11: Unsupervised MT via Language Transfer on X-En translations. The model fine-tuned on one language
pair is directly tested on another. We use gray color to show the direct fine-tuning results, and lightgray color to
show language transfer within similar language groups. We bold the highest transferring score for each pair.

Pairs BT Transfer Combined

Ro!En 30.5 Cs!En 23.0 33.9
Ne!En 10.0 Hi!En 18.9 22.1
Zh!En 11.3 Ko!En 9.2 15.0
Nl!En 28.5 It!En 34.1 35.4

Table 12: Back-Translation v.s. Language Transfer
for Unsupervised MT. We present the best transfer-
ring scores together with the pairs transferred from.

late all languages with similar representations. We
also present three examples of language transfer-
ring between Zh, Ja and Ko in appendix B.

When is language transfer useful? Table 11
also shows mixed results at each pair. First, for
most pairs, language transfer works better when
fine-tuning is also conducted in the same language
family, especially between Indic languages (Hi,
Ne, Gu). However, significant vocabulary sharing
is not required for effective transfer. For instance,
Zh-En and It-En achieve the best transfer learning
results on Ko-En and Ar-En, respectively. How-

ever, the vocabulary overlapping (even character
overlapping) between Zh and Ko, It and Ar is low.

w/ Back-Translation We also present the com-
parison on 4 pairs of unsupervised MT with back-
translation (BT) v.s. language transfer in Table 12.
The results are also mixed. If there exists high
quality (similar languages) bi-text data, or trans-
lating between dissimilar pairs, language transfer
is able to beat the conventional methods with BT.
Furthermore, we also show promising results for
combining these two techniques. In such cases, we
start from the best transferred model and apply (it-
erative) BT on the same monolingual corpus used
in pre-training. Table 12 presents the results with 1
iteration of BT. For all pairs, we see improvements
by combining both techniques.

6 Related Work

Pre-training for Text Generation This work
inherits from the recent success brought by self-
supervised pre-training for NLP applications (Pe-



• Sequence-level pre-training with only monolingual data 
• Sub-span of the source sentence is replaced with their lexical 
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Figure 1: The training example of our proposed CSP which randomly replaces some words in the source input with
their translation words based on the probabilistic translation lexicons. Identical to MAS, the token ‘-’ represents
the padding in the decoder. The attention module represents the attention between the encoder and decoder

Similar to Song et al. (2019b), CSP pre-trains a
sequence to sequence model by predicting the sen-
tence fragment x[u:v] with the modified sequence
x\u:v as input. With the log likelihood as the ob-
jective function, CSP trains the NMT model on the
monolingual corpora X as:

L(✓;X) = 1
|X|

P
x2X logP (x[u:v]|x\u:v; ✓)

= 1
|X|

P
x2X log

vQ
t=u

P (xt|x<t, x\u:v; ✓)

(3)
Figure 1 shows an example for CSP train-
ing, where the original source sentence
(x1, x2, x3, x4, x5, x6, x7) with the fragment
(x3, x4, x5, x6) being replaced with their transla-
tion words, i.e., (y0

3, y
0
4, y

0
5, y

0
6) sampled from the

extracted probabilistic translation lexicons. The
encoder takes the code-mixed source sentence as
input, and the decoder only predicts the replaced
fragment (x3, x4, x5, x6).

4 Experiments and Results

This section describes the experimental details
about CSP pre-training and fine-tuning on the su-
pervised and unsupervised NMT tasks. To test the
effectiveness and generality of CSP, we conduct ex-
tensive experiments on English-German, English-
French and Chinese-to-English translation tasks.

4.1 CSP pre-training

Model configuration We choose Transformer
as the basic model structure. Following the base
model in Vaswani et al. (2017), we set the dimen-
sion of word embedding as 512, dropout rate as 0.1
and the head number as 8. To be comparable with
previous works, we set the model as 4-layer en-
coder and 4-layer decoder for unsupervised NMT,
and 6-layer encoder and 6-layer decoder for super-
vised NMT. The encoder and decoder share the
same word embeddings.
Datasets and pre-processing Following the
work of Song et al. (2019b), we use the monolin-
gual data sampled from WMT News Crawl datasets
for English, German and French, with 50M sen-
tences for each language.2 For Chinese, we choose
10M sentences from the combination of LDC and
WMT2018 corpora. For each translation task, the
source and target languages are jointly tokenized
into sub-word units with BPE (Sennrich et al.,
2016b). The vocabulary is extracted from the to-
kenized corpora and shared by the source and tar-
get languages. For English-German and English-
French translation tasks, we set the vocabulary size
as 32k. For Chinese-English, the vocabulary size is
set as 60k since few tokens are shared by Chinese

2In this paper, we lower-cased all of the case-sensitive
languages by default, such as English, German and French.

Lexical translation is build with 
only monolingual data. 
[Learning bilingual word 
embeddings with (almost) 
no bilingual data. ] 

The training paradigm follows 
MASS 

CSP: Code-Switching Pre-training for Neural Machine Translation  [Yang et al., EMNLP 2020] 
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System en-de de-en en-fr fr-en zh-en

Yang et al. (2018) 10.86 14.62 16.97 15.58 14.52
Lample et al. (2018b) 17.16 21.0 25.14 24.18 -

Lample and Conneau (2019) 27.0 34.3 33.4 33.3 -
Song et al. (2019b) 28.1 35.0 37.5 34.6 -

Lample and Conneau (2019) (our reproduction) 27.3 33.8 32.9 33.5 22.1
Song et al. (2019b) (our reproduction) 27.9 34.7 37.3 34.1 22.8

CSP and fine-tuning (ours) 28.7 35.7 37.9 34.5 23.9

Table 1: The translation performance of the fine-tuned unsupervised NMT models. To reproduce the results of
Lample and Conneau (2019) and Song et al. (2019b), we directly run their released codes on the website.3

and English. To extract the probabilistic translation
lexicons, we utilize the monolingual corpora de-
scribed above to train the embeddings for each lan-
guage independently by using word2vec (Mikolov
et al., 2013) . We then apply the public implementa-
tion of the method proposed by Artetxe et al. (2017)
to map the source and target word embeddings to a
shared-latent space.4

Training details We replace the consecutive to-
kens in the source input with their translation words
sampled from the probabilistic translation lexicons,
with random start position u. Following Song et al.
(2019b), the length of the replaced fragment is em-
pirically set as roughly 50% of the total number
of tokens in the sentence, and the replaced tokens
in the encoder will be the translation tokens 80%
of the time, a random token 10% of the time and
an unchanged token 10% of the time. 5 In the ex-
tracted probabilistic translation lexicons, we only
keep top three translation words for each source
word and also investigate how the number of trans-
lation words produces an effect on the training
process. All of the models are implemented on
Py-Torch and trained on 8 P40 GPU cards.6 We
use Adam optimizer with a learning rate of 0.0005
for pre-training.

4.2 Fine-tuning on unsupervised NMT

In this section, we describe the experiments on the
unsupervised NMT, where we only utilize mono-
lingual data to fine-tune the NMT model based on

3https://github.com/facebookresearch/
XLM
https://github.com/microsoft/MASS

4The configuration we used to run these open-source tool
kits can be found in appendix A.

5We test different length of the replaced segment and report
the results in the appendix B. We find similar results to Song
et al. (2019b).

6The code we used can be found in the attached file.

the pre-trained model.
Experimental settings For the unsupervised
English-German and English-French translation
tasks, we take the similar experimental settings to
Lample and Conneau (2019); Song et al. (2019b).
Specifically, we randomly sample 5M monolingual
sentences from the monolingual data used during
pre-training and report BLEU scores on WMT14
English-French and WMT16 English-German. For
fine-tuning on the unsupervised Chinese-to-English
translation task, we also randomly sample 1.6M
monolingual sentences for Chinese and English re-
spectively similar to Yang et al. (2018). We take
NIST02 as the development set and report the
BLEU score averaged on the test sets NIST03,
NIST04 and NIST05. To be consistent with the
baseline systems, we apply the script multi-bleu.pl
to evaluate the translation performance for all of
the translation tasks.
Baseline systems We take the following four
strong baseline systems. Lample et al. (2018b)
achieved state-of-the-art (SOTA) translation per-
formance on unsupervised English-German and
English-French translation tasks, by utilizing cross-
lingual vocabulary, denoising auto-encoding and
back-translation. Yang et al. (2018) proposed
the weight-sharing architecture for unsupervised
NMT and achieved SOTA results on unsupervised
Chinese-to-English translation task. Lample and
Conneau (2019) and Song et al. (2019b) are among
the first endeavors to apply pre-training to unsuper-
vised NMT, and both of them achieved substantial
improvements compared to the methods without
utilizing pre-training.
Results Table 1 shows the experimental results
on the unsupervised NMT. From Table 1, we can
find that the proposed CSP outperforms all of the
previous works on English-to-German, German-to-

2629

System en-de en-fr zh-en

Vaswani et al. (2017) 27.3 38.1 -

Vaswani et al. (2017) (our reproduction) / + BT 27.0 / 28.6 37.9 / 39.3 42.1 / 43.7
Lample and Conneau (2019) (our reproduction) / + BT 28.1 / 29.4 38.3 / 39.6 42.0 / 43.7

Song et al. (2019b) (our reproduction) / + BT 28.4 / 29.6 38.4 / 39.6 42.5 / 44.1

CSP and fine-tuning (ours) / + BT 28.9 / 30.0 38.8 / 39.9 43.2 / 44.6

Table 2: The translation performance of supervised NMT on English-German, English-French and Chinese-to-
English test sets. (+ BT: trains the model with back-translation method.)

English, English-to-French and Chinese-to-English
unsupervised translation tasks, with as high as
+0.7 BLEU points improvement in German-to-
English translation task. In French-to-English
translation direction, CSP also achieves compa-
rable results with the SOTA baseline of Song et al.
(2019b). In Chinese-to-English translation task,
CSP even achieves +1.1 BLEU points improvement
compared to the reproduced result of Song et al.
(2019b). These results indicate that fine-tuning un-
supervised NMT on the model pre-trained by CSP
consistently outperforms the previous unsupervised
NMT systems with or without pre-training.

4.3 Fine-tuning on supervised NMT

This section describes our experiments on super-
vised NMT where we fine-tune the pre-trained
model with bilingual data.
Experimental settings For supervised NMT,
we conduct experiments on the publicly available
data sets, i.e., WMT14 English-French, WMT14
English-German and LDC Chinese-to-English cor-
pora, which are used extensively as benchmarks for
NMT systems. We use the full WMT14 English-
German and WMT14 English-French corpus as
our training sets, which contain 4.5M and 36M sen-
tence pairs respectively. For Chinese-to-English
translation task, our training data consists of 1.6M
sentence pairs randomly extracted from LDC cor-
pora.7 All of the sentences are encoded with the
same BPE codes utilized in pre-training.
Baseline systems For supervised NMT, we con-
sider the following three baseline systems. 8 The
first one is the work of Vaswani et al. (2017),

7LDC2002L27,LDC2002T01,LDC2002E18,LDC2003E07,
LDC2004T08,LDC2004E12,LDC2005T10

8Since model-fusion approaches incorporate too much ex-
tra parameters, it is not fair to take them as baselines here.
We leave the comparison between CSP and mode-fusion ap-
proaches in the appendix C.

which achieves SOTA results on WMT14 English-
German and English-French translation tasks. The
other two baseline systems are proposed by Lample
and Conneau (2019) and Song et al. (2019b), both
of which fine-tune the supervised NMT tasks on the
pre-trained models. Furthermore, we compare with
the back-translation method which has shown its
great effectiveness on improving NMT model with
monolingual data (Sennrich et al., 2016a). Specif-
ically, for each baseline system, we translate the
target monolingual data used during pre-training
back to the source language by a reversely-trained
model, and get the pseudo-parallel corpus by com-
bining the translation with its original data. 9 At
last, the training data which includes pseudo and
parallel sentence pairs is shuffled and used to train
the NMT system.
Results The experimental results on supervised
NMT are presented at Table 2. We report the BLEU
scores on English-to-German, English-to-French
and Chinese-to-English translation directions. For
each translation task, we report the BLEU scores
for the standard NMT model and the model trained
with back-translation respectively. As shown in
Table 2, compared to the baseline system without
pre-training (Vaswani et al., 2017), the proposed
model achieves +1.6 and +0.7 BLEU points im-
provements on English-to-German and English-to-
French translation directions respectively. Even
compared to stronger baseline system with pre-
training (Song et al., 2019b), we also achieve +0.5
and +0.4 BLEU points improvements respectively
on these two translation directions. On Chinese-
to-English translation task, the proposed model
achieves +0.7 BLEU points improvement com-
pared to the baseline system of Song et al. (2019b).
With back-translation, the proposed model still out-
performs all of the baseline systems. Experimental
results above show that fine-tuning the supervised

CSP: Code-Switching Pre-training for Neural Machine Translation  [Yang et al., EMNLP 2020] 
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• mRASP: multilingual Random Aligned Substitution 
Pre-training 
‣ Multilingual Pre-training Approach 
‣ RAS: specially designed training method to align 

semantic embeddings 

Encoder Decoder
X1 Z2 X3 Z4 X5

Y3 Y4Y2

<s> Y1 Y3Y2 Y4

Y1 Y5

X2 X4

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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Encoder Decoder

I like singing and dancing<EN id>

I like chanter and danser<EN id>

1 2 3 4 50

1 2 3 4 50

Orig
J’adore chanter et danser<FR id>

1 2 3 40

J’adore chanter et danser

J’adore chanter et danser

J’adore chanter et danser

1 2 3 40

RAS

tok
pos

tok
pos

<EOS>

<EOS>Pre-training

<FR id>

Random Aligned Substitution

En 
Fr 

Es 

De 
It 

<En> I love you. 
<Fr> Je t’aime. 
<De> Ich liebe dich.  
<Es> Te quiero.  
<It> ti amo. 

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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Encoder Decoder

I like singing and dancing<EN id>

I like chanter and danser<EN id>

1 2 3 4 50

1 2 3 4 50

Orig
J’adore chanter et danser<FR id>

1 2 3 40

J’adore chanter et danser

J’adore chanter et danser

J’adore chanter et danser<FR id>

1 2 3 40

RAS

tok
pos

tok
pos

<EOS>

<EOS>Pre-training

Fine-tuning

Encoder Decoder

tok
pos

I like playing basketball<EN id>

1 2 3 40

J’adore jouer au basketball<FR id>

1 2 3 40

J’adore jouer au basketball <EOS>
En-Fr

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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• Random Aligned Substitution (RAS) 
‣ Randomly replace a source word to its synonym in different 

language. 
‣ Draw the embedding space closer.

I like chanter and danser

ℒpre = ∑
i,j∈ℰ

𝔼(xi,xj)∼𝒟i,j [−log Pθ (xi ∣ C (xj))]
singing dancing

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



• Pre-training Dataset: PC32 (Parallel Corpus 32) 
– 32 English-centric language pairs, resulting in 64 directed 

translation pairs in total 
– Contains a total size of 110.4M public parallel sentence pairs

Training Data for mRASP
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# of En-X sentence pairs

1
10

100
1000

10000
100000

1000000
10000000

100000000

Fr Lv Fi Bg Et It Ru Hi El Cs Tr Ka Sr Af My Gu
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Fine-tuning Dataset
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• Fine-tuning Dataset 
• Indigenous Corpus: included in pre-training phase 

‣ Extremely low resource (<100K) (Be, My, etc.) 
‣ Low resource(>100k and <1M) (He, Tr, etc.) 
‣ Medium resource (>1M and <10M) (De, Et, etc.) 
‣ Rich resource (>10M) (Zh, Fr, etc.)

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP:  Rich resource works

118

• Rich resource benchmarks can be further 
improved (En->Fr +1.1BLEU).

28

28.75

29.5

30.25

31

En2De(wmt2016)

Direct CTNMT
XLM MASS
mBERT mRASP

40

41.75

43.5

45.25

47

En2Fr(wmt2014)

Direct CTNMT
mBART mRASP

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Low resource works

119
lower resource higher resource

Extremely-Low Resource Direceons

0
10
20
30
40

En2Be Be2En En2My My2En En2Af Af2En En2Eo Eo2En

35.8
30.427

31.1
25.328.632.3

25.8

6.74.97.28.35.4
10.29.68.5

Direct mRASP

Low Resource Direceons

0
10
20
30
40
50

En2He He2En En2Tr Tr2En En2Ro Ro2En En2Cs Cs2En

29.8
23.2

37.439
33.3

21

44.6

32.4
22.719

29.230.5

19.4
10.7

27.6
19

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Unseen languages
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Fr-Zh(20K) De-Fr(9M)
—> <— —> <—

Exotic Pair
Direct 0.7 3 23.5 21.2
mRASP 25.8 26.7 29.9 23.4

Nl-Pt(12K) Da-El(1.2M)
—> <— —> <—

Exotic Full
Direct 0.0 0.0 14.1 16.9
mRASP 14.1 13.2 17.6 19.9

En-Mr(11K) En-Gl(1.2M)
—> <— —> <—

Exotic Source/
Target

Direct 6.4 6.8 8.9 12.8
mRASP 22.7 22.9 32.1 38.1

En-Eu(726k) En-Sl(2M)
—> <— —> <—

Direct 7.1 10.9 24.2 28.2
mRASP 19.1 28.4 27.6 29.5

12k: Direct not work VS mRASP achieves 10+ BLEU!!

• mRASP generalizes on all exotic scenarios.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Compare with other methods

121

0

7.5

15

22.5

30

En2Gu Gu2En En2Kk Kk2En En2Tr Tr2En En2Et Et2En

Direct mBART
mRASP

0

12.5

25

37.5

50

En2Fi Fi2En En2Lv Lv2En En2Cs En2De En2Fr

• mRASP outperforms mBART for all but two 
language pairs.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Makes multilingual embeddings more similar
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RAS draws the embedding space of languages closer.

0

0.125

0.25

0.375

0.5

Language Pair
En-Zh En-Fr En-De En-Ro En-Ru En-Cs En-Ar En-Tr En-Et En-Af

0.35
0.320.30.31

0.350.33

0.4
0.34

0.41

0.32

0.25
0.210.190.17

0.24
0.2

0.31

0.24

0.33

0.21

mRASP w/o RAS mRASP

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP 2: Contrastive Learning for Many-to-many Multilingual Neural Machine 
Translation

123

Supervised

Unsupervised

Zero-shot

Comparable / better performance on high-resource directions
Arivazhagan et al. 2019

Enabling unsupervised / zero-shot translation

Parallel

Monolingual

Leveraging both parallel & monolingual data

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan et al., ACL 2021] 



mRASP2 introduces monolingual data

124

• Parallel text

Encoder Decoder

你 like انواع من Musik<ZH id> quel 的 呢

<EOS>你 喜欢 类型 ⾳乐哪种 的 呢

你 喜欢 类型 ⾳乐<ZH id> 哪种 的 呢

喜欢 类型 ⾳乐哪种

C(x
ZH

)
x
ZH

x
ZH

Encoder Decoder

I like 唱歌 and 跳舞<EN id>

J’adore chanter et danser

J’adore chanter et danser

<EOS>

<FR id>

singing dancing

C(x
EN

) x
FR

x
FR

• Monolingual text

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan et al., ACL 2021] 



mRASP2 maps different languages in a same space
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Encoder Decoder

<Fr> Je t’aime.
<Fr> C’est la vie. 

…… 

<Zh> 你是谁

<En> It’s sunny. <En> I love you.

…
Anchor

+

<Fr> Je t’aime.

  Contrastive Loss: Lctr        

—

PositiveNegative

  Cross Entropy Loss: Lce           

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan et al., ACL 2021] 



Experiments

126

Monolingual Corpus mainly contributes to unsupervised translation

0

10

20

30

40

Supervised Unsupervised Zero-shot

m-Transformer mRASP (w/o finetune) mRASP2 w/o AA mRASP2 w/o MC24 mRASP2



Better Semantic Alignment: Sentence Retrieval

127

70

75

80

85

90

Averaged Retrieval acc

89.6

84.4

79.8

m-Transformer mRASP2 w/o AA mRASP2

15-way parallel test set(Ted-M): 2284 
samples

Contrastive Learning and Aligned 
Augmentation both contribute to the 
improvement on sentence retrieval 



Learning Language Specific Sub-network for Multilingual Machine Translation 

128

• LaSS accommodates one sub-network for each language pair. 
– Each language pair has shared parameters with some other language 

pairs and preserves its language-specific parameters 
– For fine-tuning, only updates the corresponding parameters

En Zh
En Fr
En De

En Zh
En Fr
En De

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



– WMT
Efficacy in alleviating Parameter Interference

129

Transformer-base

15

18.25

21.5

24.75

28

Low Medium Rich All

Baseline LaSS
Transformer-big

15

18.75

22.5

26.25

30

Low Medium Rich All

Baseline LaSS

LaSS obtains consistent gains for both Transformer-base and Transformer-big   

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



– WMT
LaSS obtains more gains for rich resource 
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Transformer-base

15

18.25

21.5

24.75

28

Low Medium Rich All

Baseline LaSS
Transformer-big

15

18.75

22.5

26.25

30

Low Medium Rich All

Baseline LaSS

With the dataset scale increasing, the improvement becomes larger, since rich 
resource language pairs suffer more from parameter interference

+1.3

+0.7

+1.7

+0.1

+0.7

+0.8



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs

131Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs

132

LaSS reaches the bilingual model 
performance with fewer steps.



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs

133

LaSS hardly drops on existing 
language pairs



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs

134

easy adaptation is attributed to the 
language specific sub-network 

Only updates the corresponding 
parameters avoids catastrophic 
forgetting



Top/bottom layers prefer language specific capacity

135

The top deals with output projection 
layer and the bottom is related to 
embedding layer, which are both 

language-specific.



Mask similarity is positively correlated to language family

136

En→X X→En

Similar languages tends to group together 
for both En→X and X→En

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



• Multilingual fused pre-training 
– Training encoder on masked sequences composed of multiple 

language, concatenated or mixed words.  
• Multilingual sequence-to-sequence pre-training 

– mBart: Recover original sentence from noised ones in multiple 
languages.  

– mRASP & mRASP2: augmenting data with randomly substitute of 
words from bilingual lexicon + monolingual reconstruction + 
contrastive learning  

– LaSS: use pre-training and fine-tuning to discover language-
common sub-nets and language-specific sub-nets for MT

Summary for Multilingual Pre-training

137



PART IV: Pre-training 
for Speech Translation



• source language speech(audio)  target lang text
Speech-to-Text Translation(ST)

139

“Hello”

你好

Application Type 
• (Non-streaming) ST e.g. video 

translation    
• Streaming ST         e.g. realtime 

conference translation             

System 
• Cascaded ST          
• End-to-end ST 

       



- Challenges: 
1.Computationally inefficient 
2.Error propagation:  Wrong transcription ➡ Wrong translation

Cascaded ST System

140

do at this and see if it works for you ➡ 这样做，看看它是否对你有⽤ 
duet this and see if it works for you ➡ ⼆重奏⼀下，看看它是否对你有⽤

ASR system

Good 
morning

MT system
Bonjour

Transcription TranslationSpeech 



• Single model to produce text translation from speech 
• Basic model: Encoder-Decoder architecture (e.g. Transformer) 
• Advantage: 

– Reduced latency, simpler deployment 
– Avoid error propagation

End-to-end ST Model

141

Bonjour
Translation text

Encoder 
(Transformer)

Decoder 
(Transformer)

End-to-end ST modelSpeech signal

[1] Bérard et al., Listen and translate: A proof of concept for end-to-end speech-to-text translation. 2016



Basic Speech Translation Model (Same as MT)
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Transformer-based: N-layer convolution + attention encoder, M-layer decoder 
Training data: <audio seq., translation text>

Encoder 
Layer

<BOS> y1 y2

y1 y2 y3

Encoder
Beam 
Search

Decoder

Multi-Head 
Attention

Add & Norm

Feed 

Add & Norm

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm

Masked 
Multi-Head 
Attentionfbank 

log mel freq.

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Encoder 
Layer

Decoder 
Layer

Decoder 
Layer

Decoder 
Layer

Decoder 
Layer

Decoder 
Layer

Decoder 
Layer

Decoder 
Layer

Decoder 
Layer

Decoder 
Layer

Softmax Softmax Softmax

How are you ?

Comment  allez-vous  ?

CNN



• Data scarcity - lack of large 
parallel audio-translation 
corpus 

• Modality disparity between 
audio and text 

• Performance gap of direct ST: 
– BLEU: ST 18.6 vs. MT 36.2 (on 

MuST-C En-De)

Challenge

143

B
LE

U

0

9.5

19

28.5

38

MT (Transformer)
Direct ST (CNN+Transformer)

MuST-C En-De



• MT Pre-training 
– Decoder initialization from separately trained MT model 
– Single-modal(audio) Encoder-Decoder: COSTT[Dong et al, AAAI 2021b] 

• ASR Pre-training 
– Curriculum Pre-training [Wang et al, ACL 2020] 
– LUT [Dong et al, AAAI 2021a] 

• Audio Pre-training 
– Wav2vec & Wav2Vec2.0 [Schneider et al. Interspeech 2019, Baevski et al NeurIPS2020] 
– Apply to ST [Wang et al, 2021, Zhao et al, ACL 2021, Wang et al, Interspeech 2021]  

• Raw Text Pre-training 
– LUT [Dong et al, AAAI 2021a] 

• Bi-modal Pre-training 
– TCEN-LSTM [Wang et al, AAAI 2020] 
– Chimera [Han et al, ACL 2021a]  

– XSTNet [Ye et al, Interspeech 2021] 
– Wav2vec2.0 + mBart + Self-training [Li et al, ACL 2021b] 
– FAT-ST [Zheng et al, ICML 2021]

Pre-training for Speech Translation

144



Using external Parallel Text
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Dataset size  
ST vs MT

Da
ta

siz
e 

(#
se

nt
en

ce
s)

0M

1.3M

2.5M

3.8M

5M

En-De En-Ru

2.5M

4.6M

270K234K

MuST-C ST dataset
WMT16 MT dataset

🤔 How to use MT 
data with much 
larger scale to 

improve ST 
performance?



Separate Encoder-Decoder Pre-train
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Encoder

Decoder

How are you ?

Comment  allez-vous  ?

Speech Translation 
fine-tune on ST data

Encoder

Decoder

How are you ?

Comment  allez-vous  ?

Machine Translation 
WMT corpus

Encoder

Decoder

How are you ?

Speech Recognition 
LibriSpeech corpus

init

init



Knowledge Distillation from MT model
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Encoder

Decoder

How are you ?

Comment  allez-vous  ?

ST Cross-entropy loss

Encoder

Decoder

How are you ?

Comment  allez-vous  ?

MT pre-training KL loss +

End-to-End Speech Translation with Knowledge Distillation [Liu et al, Interspeech 2019]



Compressed 
Encoder Consecutive Decoder

How to make a single model’s decoder to perform text translation? 
                  Decoder   ==>  translation 
Encoder -> Decoder  ==> transcribe and translation

Pre-train ST’s decoder with full MT

148

(apples) apples pommes

Transcription Translation-

a p p l e s p o m m e s

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]
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COSTT for ST

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]

Acoustic-Semantic 
Encoder

Transcription-Translation 
Decoder

Input : 
Log-mel fbank 

feature of audio

Transcript : 
“Good morning”CTC loss

Acoustic 
represent: Cross-Entropy loss

Translation: 
“Bonjour”

Semantic 
represent:

Shrinking

Step1: Pre-train using 
external MT corpus

Step 2: Train encoder w/ shrinking module using CTC  
Step 3: Train full model on ST data <audio, transcript, translation>



• Unified training with both 
transcript and translation 
text 

• Reduced encoder output 
size with CTC-guided 
shrinking  

• Able to pre-train the 
decoder with external MT 
parallel data

Advantages of COSTT

150

Semantic 

Acoustic 
~1000

~10

Phoneme 
spikes

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]



Using external ASR data
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Dataset size  
ST vs ASR

Da
ta

siz
e 

(h
ou

rs
)

0

500

1000

1500

2000

MuST-C ST data ASR data

🤔  

How to use larger 
external ASR data 

to improve ST 
performance?

450

1860

CommonVoice

LibriSpeech



Curriculum Pre-training with ASR data
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Transformer Encoder

2D Convolution

0 1 2 3
+ + + +

s

Transformer Decoder

Transformer Encoder

“I   like    to    eat    apple”

Transformer Decoder

I like to eat apple

ASR Cross entropy +  ASR CTC loss

s
“I   like    to    eat    apple”

eat

Masked LM 
KL loss

Ich esse gerne Apfel

I   like  to  eat  apple

Bilingual lexicon 
KL loss+

Ich esse gerne Apfel
Translation cross entropy

① ②
③

Curriculum Pre-training for End-to-end 
Speech Translation [Wang et al, ACL 2020]



ASR Pre-training helps ST
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IWSLT & Librispeech

B
LE

U

5

8

11

14

17

20

En-De En-Fr

18.218.6
1818.2

16.9

13.1 13.2
12.5

Transformer ST
Transformer+ASR
Transformer+Curriculum
COSTT
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Raw Text Pre-training

🤔 How to use 
pre-trained BERT  

to improve ST 
performance?

Using pre-trained LM in 
decoding weighting is 

easy! 

But

Dataset size  
ST vs Raw text

Da
ta

siz
e 

(m
ill

io
n 

w
or

ds
)

0

700

1400

2100

2800

3500

MuST-C ST data Raw text

8.3M

3300M

English Wiki

BookCorpus

400x



Drawbacks of the Encoder-Decoder Structure
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Encoder Decoder

1. A single encoder is hard to capture the 
representation of audio for the translation. 
2. Limited in utilizing the information of “transcription” in 
the training.



Question: How human translate?

“Listen-Understand-Translate”(LUT) model based motivated by 
human’s behavior

Motivation: Mimic human’s behavior

156
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Motivation of Better Encoding
Drawback 1:   A single encoder is not enough. 
Idea 1: Introduce a semantic encoder 

Drawback 2:   Limit in using “transcript” info. 
Idea 2: Utilizing the pre-trained representation (e.g. BERT) of the 
“transcript” to learn the semantic feature.

Acoustic 
Encoder 

Semantic Encoder 
(Understand)

Decoder 
(Translate)

BERT of “transcript”

supervise

“transcript”
supervise

Listen, Understand and Translate [Q. Dong, R. Ye, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]
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LUT: Utilizing Pre-trained Model on Raw Text
Training data: triples of  
    <speech, transcript_text, translate_text>

Listen, Understand and Translate [Q. Dong, R. Ye, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]

Acoustic  
Encoder 
(Listen)

Semantic  
Encoder 

(Understand)

Translation 
Decoder 

(Translate)

Input : 
Log-mel 

fbank feature 

(𝑥)

Transcript : 
“Good morning”

(𝑧)

CTC loss

BERT representation

Distance loss CE loss

Translation : 
“Bonjour”

(𝑦)



ST Benefits from BERT, with Raw Text Pre-training
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IWSLT & Librispeech

B
LE

U

5

8

11

14

17

20

En-De En-Fr

18.318.6 18.218.6
1818.2

16.9

13.1 13.2
12.5

Transformer ST
Transformer+ASR
Transformer+Curriculum
COSTT
LUT

Listen, Understand and Translate [Dong et al, AAAI 2021]
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Audio Pre-training

🤔 How to use 
larger  raw audio 

data to improve ST 
performance?

Dataset size  
ST vs raw Audio

D
at

as
iz

e 
(h

ou
rs

)

0

15,000

30,000

45,000

60,000

MuST-C ST data LibriSpeech LibriVox

53,200

961450

100x
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Wav2Vec: Self-supervised Speech Representation Learning

CNN x5

CNN x9 

Low level acoustic 
state h, each 

frame ~ 30ms, 
stride10ms

high-level 
context state c, 
each frame ~ 

210ms, 
stride10ms

Minimize contrastive loss  
L = − ∑ (log σ(zt+1 ⋅ ht) + ∑ log σ(−z− ⋅ ht))
Bring closer context 

and acoustic state

Bring further context and 
negative sampled 

acoustic state

Training data: 
LibriSpeech 960 hrs 

audio only

wav2vec: Unsupervised Pre-training for Speech Recognition [Schneider et al, Interspeech 2010]
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Wav2Vec2.0: Contrastive on quantized acoustic state

CNN x7

Transformer  
Encoder

x12 

Quantized low-level 
acoustic state, 
each frame ~ 

25ms, stride 20ms

Minimize contrastive loss  
L = − ∑ log

exp Sim(ct, qt)
∑ exp Sim(ct, q−)

+ penalty

Bring closer masked 
context and quantized 

acoustic state

Training data: (audio only) 
LibriSpeech 960 hrs 
LibriVox 53k hrs

qqqqq

Masked context 
during training

Wav2vec2.0: a Framework for Self-Supervised Learning of Speech Representations [Baevski et al, NeurIPS 2020]
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Speech Translation with Audio-Pretrain

Encoder

Decoder

How are you ?

Comment  allez-vous  ?

Wav2vec Pretrain + Fine-tune on ST
             MuST-C ST results

B
LE

U

12

18

24

30

36

En-De En-Fr En-Ru En-Ro

22.4

17

34.6

23.6
22.2

15.1

33.3

22.8

18.2

29.8

17.1

27.8

LSTM [1]
Wav2vec-LSTM [1]
Transformer [2]
Wav2vec2.0-Transformer [3]

[1] Self-supervised Representations improve end-to-end speech translation [Wu et al. InterSpeech 2020] 
[2] NeurST toolkit [Zhao et al ACL2021 demo]                   [3] End-to-end Speech Translation [Ye et al. InterSpeech 2021]

Wav2vec 2.0
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Self-training with Audio data

Transformer
Decoder

How are you ?

Comment  allez-vous  ?

Wav2vec 2.0 
  

CNN

Transformer

Step 0. Audio-only 
pre-training for 
Wav2vec2.0 

Step 1. Freeze 
Wav2vec2.0, train 
on ST 

Step 2. Self-train on 
generated 
pseudo-translation 
with LibriVox audio 

 

CoVoST2 Results
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En-De En-Ca En-Ar En-Tr

17.5
20.2

34.1

26.5

15.4
17.4

32.4

23.8

10
12.1

21.8

16.3

8.98.7

20.2

13.6

Transformer [1]
Transformer w/ ASR pre-train [1]
Wav2vec2.0-Transformer [2]
Wav2vec2.0-Transformer + Self-train [2]

[1] CoVoST 2 and Massively Multilingual Speech-to-Text Translation, [Wang et al InterSpeech 2021] 
[2] Large-Scale Self- and Semi-Supervised Learning for Speech Translation [Wang et al. 2021]



• Chimera: Learning Fixed-size Shared Space for both 
audio and text, audio+MT pretraining [Han et al. 2021] 

• XSTNet: Bring speech sequence to roughly similar length 
to text, then Pre-training & progressive multi-task fine-
tuning [Ye et al. 2021] 

• Wav2vec2.0-mTransformer LNA: Use both audio pertaining 
+ multilingual pertained language model, and selective 
efficient fine-tuning [Li et al. ACL 2021] 

• FAT-ST: Masked pre-training for fused audio and text 
[Zheng et al. ICML 2021]

Bimodal Pre-training with Audio & MT data

165



Bi-modal Encoding Architecture for ST

166

Bonjour

Translation text
Common 
Encoder

Decoder

Audio input

Speech 
Encoder

Text Input Word 
Embedding

Challenges: gap between text and audio 
1. Length: ~20 (text) vs. ~ 1k-10k (audio) 
2. Embedding space disparity
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Insights from Cognitive Neuroscience

Convergence sites of speech (blue) and text (yellow)

[2] Spitsyna, Galina, et al. "Converging language streams in the human temporal lobe." Journal of Neuroscience 26.28 (2006): 7328-7336.

Speech and text interfere with each other in brain[1]

[1] Van Atteveldt, Nienke, et al. "Integration of letters and speech sounds in the human brain." Neuron 43.2 (2004): 271-282.

processing pathsacWvaWon map
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Idea: Bridging the Speech-Text modality gap with Shared Semantic Representation

ST triple data:  
    <speech, transcript_text, translate_text>

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]
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Chimera Model for ST

Transform
er Encoder

Memory  
Queries

Shared 
Semantic 
Projection

Semantic 
Memory

speech 
input

text 
input

contextual
 feature

m
tout 

le 

monde 

aime 

les 

chats

Transform
er D

ecoder

everyone 

loves 

cats

Encoding Module Shared Semantic Memory Module Decoding Module

W
av2Vec2 

M
odule

pos
pos
pos

emb
emb
emb

+
+
+

C
N

N

×n

attn ffn
Q
K,V
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Benefit: able to exploit large external MT data

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]
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Chimera achieves the best (so far) BLEU on all languages in MuST-C

Learning Shared Semantic Space for Speech-to-Text Translation [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]



Cross Speech-Text Network (XSTNet)

171End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

s：
[en] This is a book .

CNNs

…

[src_tag]

Transformer Encoder

Transformer 
Decoder

[fr] c'est un livre.

c'est un livre.

Wav2vec 2.0

OR

Embeddings  
with position



Supports to train MT data
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 Transformer MT model 
 We can add more external MT data to train Transformer 

encoder & decoder

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]



Supports inputs of two modalities
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 Wav2vec2.0[1] as the acoustic encoder 
 We add two convolution layers with 2-stride to shrink the length.

≈Acoustic 
encoder

[1] wav2vec 2.0: A framework for self-supervised learning of speech representations, 2020



• We use language indicators to distinguish different 
tasks.

Language indicator strategy
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Tasks Source input Target output

MT <en> This is a book. <fr> c'est un livre.

ASR <audio> <en> This is a book.

ST <audio> <fr> c'est un livre.

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]



Progressive Multi-task Training
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#

Multi-task Finetune 
Using (1) external MT  

     (2)   with <speech, translation> 
     (3)  with <speech, transcript>  

DMT−ext
DST
DASR

Large-scale MT pre-training  

Using external MT DMT−ext

#
Progressive: 

Don’t stop  

training DMT−ext

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]
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XSTNet achieves State-of-the-art Performance

XSTNet-Base: Achieves the SOTA in the restricted setup 
XSTNet-Expand: Goes better by using extra MT data

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]



177

XSTNet better than cascaded ST! a gain of 2.6 BLEU

B
LE

U
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19

26

33

40

En-De En-Fr En-Ru

18.4

38

27.8

17

34.9

25.2

16.4

33.8

23.6

Cascaded-Espnet
Cascaded-Strong
XSTNet-Expand

Cascaded  
- Strong

Model Training data Performance 
(En-De)

ASR W2V2+ Transformer MuST-C DASR WER=13.0
MT Transformer-base WMT + MuST-C DMT BLEU=31.7

What is “Cascaded-Strong” system?
Strong ASR model Large-scale MT data+



• Encoder uses Wav2vec2.0 pre-
trained on LibriVox-60k audio 

• Decoder: mBart pre-trained on 50 
monolingual text and 49 bitext 

• ST finetune strategy (LNA): 
– Only fine-tune layer-norm and attention 

layers 
• MT+ST multitask joint train with 

further parallel bitext data

Audio and Multilingual Text Pretrain for Multilingual ST

178

Transformer
Decoder

How are you ?

Comment  allez-vous  ?

Wav2vec 2.0 
  

CNN

Transformer

CNN

Multilingual Speech Translation with Efficient Finetuning of Pretrained Models [Li et al, ACL 2021]



Wav2vec2.0 retraining + Multilingual training effectively transfers to low 
resource source language

CoVoST2 Results

B
LE

U

0

10

20

30

40

Fr-En De-En Es-En Ca-En It-En Ru-En Pt-En

24.122.8

27.6

31.1

35.2

28.2

35

6.3
4.7

18.5

23.1

27

17.5

26.5

0.51.20.2

14.4
12

8.4

24.3

Transformer
m-Transformer
Wav2vec2.0-mTransformer LNA

CoVoST2 Results
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Multilingual Speech Translation with Efficient Finetuning of Pretrained Models [Li et al, ACL 2021]



Fused Acoustic and Text Masked Language Model (FAT-MLM)

Transformer Encoder

En En En EnEn En En En De De De De

0 1 2 3 0 1 2 3
+ + + + + + + ++ + + +

+ + + + + + + +
<s> [Mask] Morning </s> <s> Guten [Mask] </s>

Acoustic embedding

Transformer Encoder

2D Convolution

0 1 2 3
+ + + +

Mask Mask

2D Deconvolution Good Tag

s

x y

Cross-entropy Cross-entropyL2 loss

180
Fused Acoustic and Text Encoding for Multimodal Bilingual 
Pretraining and Speech Translation, [Zheng et al ICML 2021]

Pre-training data 
1. Librispeech 

ASR 960h 
2. Libri-light 

audio 
3,748h 

3. Europarl/wiki 
text 2.3M 

4. MuST-C 408h 
5. Europarl MT 

1.9M



FAT-ST
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Transformer Encoder

0 1 2 3

+ + + +
<s> Good Morning </s>

<s> Guten Tag </s>

Acoustic embedding

Transformer Encoder

2D Convolution

0 1 2 3
+ + + +

s

x

Fused Acoustic and Text Encoding for Multimodal Bilingual 
Pretraining and Speech Translation, [Zheng et al ICML 2021]

Transformer Decoder

lST(s, y) lMT(x, y) Training: 
• Pre-train FAT-MLM 

with all data 
•Init FAT-ST with 

FAT-MLM, 
decoder copy 
encoder 

•Further fine-tune on 
MuST-C ST data. 



Joint audio&text Pre-training task helps ST
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Fused Acoustic and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation, [Zheng et al ICML 2021]



Pre-training Improves ST Performance
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Summary
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Direct 
Supervision Contrastive Masked LM Knowledge 

distillation
Progressive  

train
Selective 
Fine-tune Self-training

MT Parallel 
Text COSTT [Liu et al. 

2019] XSTNet

ASR Speech-
Transcript LUT

Audio-only Wav2vec 
Wav2vec 2.0

[Wang et al. 
2021]

Raw text LUT

Speech+Text Chimera FAT-ST XSTNet LNA



• Parallel speech translation data is scarce 
• Pre-training to utilize external large data 

– MT data (Parallel text) 
– ASR data (Speech-transcript) 
– Raw text (Monolingual and Multilingual) 
– Audio-only 

• Network architecture to solve modality disparity 
– CNN-Transformer 
– Fixed-size shared memory module 
– Bimodal input with length shrinking for audio 

• Techniques to better pre-train and better fine-tune 
– Contrastive prediction 
– Masked LM 
– Quantization of audio representation 
– Knowledge distillation 
– Progressive pre-training

Summary for Speech Translation Pre-training
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• Basics 
– NMT, Transformer encoder decoder.  
– Pre-training paradigm for NLP 

• Monolingual Pre-training for NMT 
– Encoder pre-training 
– Seq-to-seq pre-training 

• Multilingual  Pre-training for NMT 
• Pre-training for Speech Translation

Summary
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• Rong Ye, Chi Han, Qianqian Dong for help on 
beautification of the slides. 

Thanks
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• Monolingual Pre-training 
– When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation [Qi et al., 

NAACL 2018] 
– Improve Neural Machine Translation by Building Word Vector [Zhang et al., AI 2020] 
– A bag of useful tricks for practical neural machine translation: Embedding layer initialization and 

large batch size  [Neishi et al, ACL 2017] 
– Unsupervised pretraining for sequence to sequence learning, [Ramachandran et al., EMNLP 2017] 
– Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020] 
– Acquiring Knowledge from Pre-trained Model to Neural Machine Translation, [Weng et al AAAI 

2020] 
– Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020] 
– Comparison between Pre-training and Large-scale Back-translation,  [Huang et al., ACL 2021] 
– MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019] 
– BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, 

Translation, and Comprehension,  [Lewis et al ACL 2020]

Reference
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• Multilingual Pre-training 
– Cross-lingual Language Model Pre-training  [Conneau et al NeurIPS 2019] 
– Alternating Language Modeling for Cross-Lingual Pre-Training  [Yang et al AAAI 

2020] 
– mBART: Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., 

TACL 2020] 
– Pre-training Multilingual Neural Machine Translation by Leveraging Alignment 

Information  [Lin et al., EMNLP 2020]  
– CSP: Code-Switching Pre-training for Neural Machine Translation  [Yang et al., 

EMNLP 2020]  
– Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan 

et al., ACL 2021]  
– Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et 

al., ACL 2021]

Reference
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Reference
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• Speech Translation  
– wav2vec: Unsupervised Pre-training for Speech Recognition 
– wav2vec 2.0: A framework for self-supervised learning of speech representations 
– Investigating self-supervised pre-training for end-to-end speech translation 
– Self-supervised representations improve end-to-end speech translation (wav2vec + LSTM seq2seq) 
– Large-Scale Self-and Semi-Supervised Learning for Speech Translation 
– Consecutive Decoding for Speech-to-text Translation 
– “Listen, Understand and Translate”: Triple Supervision Decouples End-to-end Speech-to-text 

Translation 
– Learning Shared Semantic Space for Speech-to-Text Translation [ACL 21] 
– Multilingual Speech Translation with Efficient Finetuning of Pretrained Models [ACL 21] 
– Fused Acoustic and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation [ICML 

21] 
– End-to-end Speech Translation via Cross-modal Progressive Training [Interspeech 21]  
– Curriculum Pre-training for End-to-end Speech Translation [ACL 20] 
– End-to-End Speech Translation with Knowledge Distillation [Interspeech 19]


