The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint **Conference on Natural Language Processing (ACL-IJCNLP 2021)**

Pre-training Methods for Neural Machine Translation Mingxuan Wang Lei Li

ByteDance AI Lab University of California, Santa Barbara

MT helps global information flow

7000 languages in the world

Cross Language Barrier with Machine Translation

Tourism

Global Conferences

International Trade

Machine Translation has increased international trade by over 10%

Does Machine Translation Affect International Trade? Evidence from a Large Digital Platform

Erik Brynjolfsson,^a Xiang Hui,^b Meng Liu^b

^aSloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142; ^bMarketing, Olin School of Business, Washington University in St. Louis, St. Louis, Missouri 63130

Contact: erikb@mit.edu, () http://orcid.org/0000-0002-8031-6990 (EB); hui@wustl.edu, () http://orcid.org/0000-0001-7595-3461 (XH); mengl@wustl.edu, (http://orcid.org/0000-0002-5512-7952 (ML)

Received: April 18, 2019 Revised: April 18, 2019 Accepted: April 18, 2019 Published Online in Articles in Advance: September 3, 2019

https://doi.org/10.1287/mnsc.2019.3388

Copyright: © 2019 INFORMS

Abstract. Artificial intelligence (AI) is surpassing human performance in a growing number of domains. However, there is limited evidence of its economic effects. Using data from a digital platform, we study a key application of AI: machine translation. We find that the introduction of a new machine translation system has significantly increased international trade on this platform, increasing exports by 10.9%. Furthermore, heterogeneous treatment effects are consistent with a substantial reduction in translation costs. Our results provide causal evidence that language barriers significantly hinder trade and that AI has already begun to improve economic efficiency in at least one domain.

History: Accepted by Joshua Gans, business strategy. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2019.3388.

Keywords: artificial intelligence • international trade • machine translation • machine learning • digital platforms

MANAGEMENT SCIENCE

Vol. 65, No. 12, December 2019, pp. 5449-5460 ISSN 0025-1909 (print), ISSN 1526-5501 (online) Equivalent to make the world smaller than 26%

- Basics
 - -NMT
 - Pre-training paradigm
- Monolingual Pre-training for NMT
 - Pre-training style
 - Contrast to other data augmentation methods
- Multilingual Pre-training for NMT
- Pre-training for Speech Translation

PART I: Basics

What is Neural Machine Translation

Automatic conversion of text/speech from one natural language to another with a single neural network

French: Quand tu souris, le monde entier s'arrête et se fige un instant.

English: When you smile, the whole world stops and freezes for a moment.

Encoder-Decoder Paradigm

Encoder-Decoder Paradigm

Transformer Architecture

Transformer

Self-supervised learning without labels

Fine-tune on downstream tasks

Small, labelled data

Pre-training task 1

Pre-training task 2

Pre-training task n

Fine-tune on downstream tasks

Pre-training task 1

Pre-training task 2

Pre-training task n

Context Representations Semi-supervised sequence learning, Google 2015

Train LSTM Language Model

Fine-tune on **Classification Task**

Context Representations

Elmo: Deep contextual word embeddings

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

Context Representations

pre-training

Train Deep (12-layer) **Transformer LM**

GPT: improve language understanding by generative

Fine-tune on

Context Representations

- for Language Understanding
 - Bidirectional
 - Random mask

BERT: Pre-training of Deep Bidirectional Transformers

Bidirectional context Words can "see themselves"

gallon store the man went to the [MASK] to buy a [MASK] of milk

BERT: Pre-training and Fine-tuning

Pre-training

Fine-Tuning

BERT: Pre-training and Fine-tuning

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Ave
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	7
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	8

BERT achieves SOTA results on a huge number of NLP benchmarks.

Pre-training & Fine-tuning

Image Source

Does pre-training matter in NMT?

PART II: Monolingual **Pre-training for NMT**

MT: More data is better

Why Monolingual

High Resource Languages

Low Resource Languages

(from Google)

MT: Parallel data is limited

Parallel

Why Monolingual

Monolingual

PART2: Monolingual Pre-training for NMT

- The early stage
 - NMT initialized with word2vec [ACL 2017, NAACL 2018, AI 2020]
 - NMT initialized with language model [EMNLP 2017]
- BERT fusion
 - BERT Incorporating methods [ICLR 2020, AAAI 2020a]
 - BERT Tuning methods [AAAI 2020b]
- Unified sequence to sequence pre-training
 - MASS: Masked Sequence-to-Sequence Pre-training [ICML 2019]
 - BART: Denoising Sequence-to-Sequence Pre-training [ACL 2020]

NMT initialized with word2vec

- Improve Neural Machine Translation by Building Word Vector [AI 2020]
- batch size [ACL 2017]

• When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation [NAACL 2018] A bag of useful tricks for practical neural machine translation: Embedding layer initialization and large

When and Why are Pre-trained Word Embeddings Useful for Neural Machine **Translation**

data is small

When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation, [Qi et al NAACL 2018]

The pre-trained embeddings help more when the size of the training

Effect of language similarity

Dataset	Lang. Family	std	
$Es \rightarrow Pt$	West-Iberian	17.8	6
$FR \rightarrow PT$	Western Romance	12.4	
$IT \rightarrow PT$	Romance	14.5	
$Ru \rightarrow Pt$	Indo-European	2.4	
${ m He} ightarrow { m Pt}$	No Common	3.0	_

- All pairs are trained on 40,000 sentences
- Language similarity with PT: ES>FR>IT>RU – BLEU improves: ES>FR>IT
- RU and HE have very low baseline BLEU scores, so it makes sense that their increases would be larger

When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation, [Qi et al NAACL 2018]

Language family tree

Effect of language similarity

Dataset	Lang. Family	std	
$\mathrm{Es} \to \mathrm{Pt}$	West-Iberian	17.8	6
$\mathrm{Fr} \to \mathrm{Pt}$	Western Romance	12.4	
$IT \rightarrow PT$	Romance	14.5	
$R_U \rightarrow P_T$	Indo-European	2.4	
$\text{He} \rightarrow \text{Pt}$	No Common	3.0	-

- All pairs are trained on 40,000 sentences
- Language similarity with PT: ES>FR>IT>RU – BLEU improves: ES>FR>IT
- RU and HE have very low baseline BLEU scores, so it makes sense that their increases would be larger

When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation, [Qi et al NAACL 2018]

Language family tree

Effect of multilingual alignmet

Train	Eval	bi	std	pre	align
GL + PT	GL	2.2	17.5	20.8	22.4
Az + TR	AZ	1.3	5.4	5.9	7.5
BE + RU	BE	1.6	10.0	7.9	9.6

- Training on both low-resource and higher-resource languages, and test on only the lowresource language
 - bi: the bilingual baseline
 - std: the multilingual baseline
 - pre: pre-training word embedding
 - align: convert the word embeddings of multiple languages to a single space [Smith et al., 2017]
- vector spaces, and improves the performance

When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation, [Qi et al NAACL 2018]

Alignment ensures that the word embeddings of the two source languages are put into similar

NMT initialized with language model

- Unsupervised pretraining for sequence to sequence learning [EMNLP 2017] • Exploiting Source-side Monolingual Data in Neural Machine Translation [ЕМNLP 2016] Semi-Supervised Learning for Neural Machine Translation [ACL 2016]

- Otherwise, randomly initialized.

Unsupervised pretraining for sequence to sequence learning, [Ramachandran et al EMNLP 2017]

• The red parameters are the encoder and the blue parameters are the decoder. All parameters in a shaded box are pre-trained with RNN language models

, Wikipedia

-0.3

Unsupervised pretraining for sequence to sequence learning, [Ramachandran et al EMNLP 2017]

Pretraining on a lot of unlabeled data is essential.

If the model is initialized with LMs that are pretrained on the source part and target part of the parallel corpus

Unsupervised pretraining for sequence to sequence learning, [Ramachandran et al EMNLP 2017]

Only pretraining the decoder is better than only pretraining the encoder

Unsupervised pretraining for sequence to sequence learning, [Ramachandran et al EMNLP 2017]

Pretrain as much as possible because the benefits compound.

Insight

- Pre-training is effective on low-resource NMT
- Pre-training as much as components
- Pre-training as much as training data
- Cross-lingual information helps
- Limitations:
 - The improvements on rich resource NMT is not large enough
 - The pre-training model is trained on limited training corpus, e.g. the monolingual part of the parallel data
 - Only a subset of parameters are pre-trained

Then, BERT comes...

Pre-training

Fine-Tuning

Pre-training data scale increased

Monolingual Data (M)

Pre-training framework changed

Transformer-base17

Transformer-big17

WMT14 En-De

Does BERT matter in NMT?

PART2: Monolingual Pre-training for NMT

- The Bronze Age
 - NMT initialized with word2vec [ACL 2017, NAACL 2018, AI 2020]
 - NMT initialized with language model [EMNLP 2017]
- BERT fusion

- BERT Tuning methods [AAAI 2020b]
- Unified sequence to sequence pre-training
 - MASS: Masked Sequence-to-Sequence Pre-training [ICML 2019]
 - BART: Denoising Sequence-to-Sequence Pre-training [ACL 2020]

Incorporate BERT into Neural Machine Translation

Table 1: Preliminary explorations on IW

Algorithm

Standard Transformer

Use BERT to initialize the encoder of I Use XLM to initialize the encoder of N Use XLM to initialize the decoder of N Use XLM to initialize both the encoder

Leveraging the output of BERT as emb

- Fine-tuning BERT does NOT work !
 - BERT and XLM pre-training for the encoder decreased the performance
 - XLM pre-training for the decoder enlarged the performance gap
- BERT-Frozen achieved improvements

VSLT'14 English→German translati				
	BLEU score			
	28.57			
NMT	27.14			
IMT	28.22			
IMT	26.13			
r and decoder of NMT	28.99			
beddings	29.67			

Incorporate BERT into Neural Machine Translation

Additional attention model to incorporate BERT features

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

BERT features are directly fed to both encoder and decoder layers

Datasets and settings

- Fine-tuning dataset
 - 250 k sentence pairs)
 - Rich resource: WMT14 En-De and En-Fr (4 M and 36 M sentence pairs)
- Settings
 - BERT base for IWSLT
 - BERT large for WMT
 - Both the BERT-encoder and BERTdecoder attention are randomly initialized

– Low resource: IWSLT En-De, En-FR, En-Zh, En-Es (less than

Main results on supervised MT

- Experiments on a strong baseline
- BERT-fused model outperforms transformer baseline in all settings

Main results on unsupervised MT

- **BERT-fused**)
- BERT-fused outperforms XLM and MASS

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

Pre-training plays an crucial role in unsupervised NMT (Lample v.s. xml, mass and

• The comparison is slightly unfair, since BERT-fused introduced additional parameters

Table 6: Ablation study on IWSLT'14 En \rightarrow De.

Standard Transformer	28
BERT-fused model	30
Randomly initialize encoder/decoder of BERT-fused model Jointly tune BERT and encoder/decoder of BERT-fused model	$\frac{27}{28}$
Feed BERT feature into all layers without attention	29
Replace BERT output with random vectors	28
Replace BERT with the encoder of another Transformer model	28
Remove BERT-encoder attention Remove BERT-decoder attention	$\frac{29}{29}$

Jointly train BERT model with the NMT can also boost the baseline from 28.57 to 28.87. But it is not as good as fixing the BERT part, whose BLEU is 30.45

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

NMT pre-training matters

Table 6: Ablation study on IWSLT'14 En \rightarrow De.

Standard Transformer BERT-fused model	28 30
Randomly initialize encoder/decoder of BERT-fused model	27
Jointly tune BERT and encoder/decoder of BERT-fused model	28
Feed BERT feature into all layers without attention	29
Replace BERT output with random vectors	28
Replace BERT with the encoder of another Transformer model	28
Remove BERT-encoder attention	29
Remove BERT-decoder attention	29

NMT Pre-training is also important to the success of BERT-fused model Without NMT pre-training, the performance lags behind the baseline model

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

BERT attention module matters

Standard Transformer BERT-fused model	28 30
Randomly initialize encoder/decoder of BERT-fused model Jointly tune BERT and encoder/decoder of BERT-fused model	27 28
Feed BERT feature into all layers without attention	29
Replace BERT output with random vectors	28
Replace BERT with the encoder of another Transformer model	28
Remove BERT-encoder attention	29
Remove BERT-decoder attention	29

Remove attention module, the performance still outperforms baseline, but falls behind BERT-fused model It suggest that separate BERT model provides additional gains

Table 6: Ablation study on IWSLT'14 En \rightarrow De.

Standard Transformer	28
BERT-fused model	30
Randomly initialize encoder/decoder of BERT-fused model Jointly tune BERT and encoder/decoder of BERT-fused model	$27\\28$
Feed BERT feature into all layers without attention	29
Replace BERT output with random vectors	28
Replace BERT with the encoder of another Transformer model	28
Remove BERT-encoder attention Remove BERT-decoder attention	$29\\29$

Replace BERT representation with another transformer model, the performance drops significantly It indicates BERT provides meaningful information and the improvements is not from the additional parameters.

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

Of course, BERT matters

Acquiring Knowledge from Pre-trained Model to Neural Machine Translation

Task-specific Representations

Key idea

- Incorporate BERT into all encoder layers and decoder layers with adaptive weight
- Experiments including both BERT & GPT

Acquiring Knowledge from Pre-trained Model to Neural Machine Translation, [Weng et al AAAI 2020]

Dynamic fusion of different BERT layers, while BERT-fused model only uses the last layer of BERT

Madal	Pre-trained Model		EN→DE		$DE \rightarrow EN$		ZH→EN	
IVIOUEI	Encoder	Decoder	BLEU	Δ	BLEU	Δ	BLEU	Δ
Transformer (Vaswani et al. 2017)	N/A	N/A	27.3		N/A		N/A	
Transformer (Zheng et al. 2019)	N/A	N/A	27.14	—	N/A	—	N/A	
Transformer (Dou et al. 2018)	N/A	N/A	27.31	—	N/A	—	24.13	
Transformer	N/A	N/A	27.31		32.51		24.47	
	GPT	N/A	27.82	+0.51	33.17	+0.66	25.11	+0.64
	N/A	GPT	27.45	+0.14	32.87	+0.36	24.59	+0.12
	GPT	GPT	27.85	+0.54	32.79	+0.28	25.21	+0.74
	BERT	N/A	28.22	+0.91	33.64	+1.13	25.33	+0.86
w/ Fina tuning	N/A	BERT	27.42	+0.11	33.13	+0.62	24.78	+0.31
w/ Thic-tuning	BERT	BERT	28.32	+1.01	33.57	+1.06	25.45	+0.98
	GPT	BERT	28.29	+0.98	33.33	+0.82	25.42	+0.95
	BERT	GPT	28.32	+1.01	33.57	+1.05	25.46	+0.99
	MA	ISS	28.07	+0.76	33.29	+0.78	25.11	+0.64
	DAE		27.63	+0.33	33.03	+0.52	24.67	+0.20
	GPT	BERT	28.89	+1.58	34.32	+1.81	25.98	+1.51
w/ ADT Framework	BERT	GPT	29.23	+1.92	34.84	+2.33	26.21	+1.74
	GPT	GPT	28.97	+1.66	34.26	+1.75	26.01	+1.54
	BERT	BERT	29.02	+1.71	34.67	+2.16	26.46	+1.99

Acquiring Knowledge from Pre-trained Model to Neural Machine Translation, [Weng et al AAAI 2020]

GPT v.s. BERT

Pre-training has better generalization ability

System	En→De	Zh-
Standard Transformer	29.20	45.
+ back translation (1:0.5)	30.41	46.
+ back translation (1:1)	30.25	47.
+ back translation (1:2)	30.18	47.
+ back translation (1:4)	30.25	46.
BERT-fused model	30.03	46.

- Pre-training is much more promising
 - better generalization ability
 - Back translation is limited with data scale

Comparison between Pre-training and Large-scale Back-translation, [Huang et al ACL 2021]

- Advantages
 - BERT features are fused in all layers
 - **BERT** feature
- Limitions

 - Why not tune BERT?

- Additional attention model adaptively determine how to leverage

Additional cost including training storage and inference time

Towards Making Most of BERT for NMT

Performance on fine-tuning NMT

Why simply incorporating BERT does not work as expectation

- Fine-tuning leads to performance degradation on the original task
- The situation is more severe on NMT fine-tuning
 - High capacity of baseline needs much updating
 - [•] Updating to much makes the model forgets its universal knowledge from pre-training

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

Performance on other BERT tasks

- Concerted training framework
 - Rate-scheduled Learning
 - Dynamic Switch
 - Asymptotic Distillation

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

Rate-scheduled Learning rate

- Gradually increase the learning rate of BERT parameters from 0 to 1
- Then, decrease the learning rate of BERT parameters from 1 to 0
- Keep the BERT parameters frozen

Rate-scheduled learning rate is actually a trade off between finetuning and BERT frozen

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

Learning rate scalar for BERT parameter

- Dynamic Switch
 - Use a gate to dynamically decide which part is more important
 - If σ is learned to 0, it degrade to the NMT model
 - If σ is learned to 1, it simply act as Bert fine-tune approach

Dynamic Switch is more flexible than rate-scheduled learning rate

Asymptotic Distillation

- The pre-trained BERT serves as a teacher network while the encoder of the NMT model serves as a student
- Minimize MSE loss of hidden states between NMT encoder and BERT to retain the pre-trained information
- Use a hyper-parameter to balances the preference between pre-training distillation and NMT objective

Distillation Without introducing of additional parameters!

System	Architecture		En-Fr	En-Zh
	Existing systems			
Vaswani et al. (2017)	Transformer base	27.3	38.1	-
Vaswani et al. (2017)	Transformer big	28.4	41.0	-
Lample and Conneau (2019)	Transformer big + Fine-tuning	27.7	-	-
Lample and Conneau (2019)	Transformer big + Frozen Feature	28.7	-	-
Chen et al. (2018)	RNMT+ + MultiCol	28.7	41.7 -	
	Our NMT systems			
CTNMT	Transformer (base)	27.2	41.0	37.3
CTNMT	Rate-scheduling	29.7	41.6	38.4
CTNMT	Dynamic Switch	29.4	41.4	38.6
CTNMT	Asymptotic Distillation	29.2	41.6	38.3
CTNMT	+ ALL	30.1	42.3	38.9

- WMT18 En-Zh

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

• Three strategies can independently work well on WMT14 En-De, En-Fr and

• CTNMT base model achieves even better results than Transformer big model

CTNMT outperforms fine-tuning on all training steps The performance gaps is enlarged as the fine-tuning steps increasing

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

- Advantage
 - Simple and effective, obtains +3 BLEU on WMT14 en-de benchmark
 - Three methods can be used separately or jointly
- Limitation
 - Introducing pre-training method for decoder is promising but still difficult Cross attention is import but not pre-trained

Models	En→De BLEU
BERT Enc	29.2
BERT Dec	26.1
GPT-2 Enc	27.7
GPT-2 Dec	27.4

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

Encoder Decoder X GPT Х BERT

Decode has cross attention but not GPT

- Cross attention plays a crucial role in NMT
- Pre-trained language models, such as BERT and GPT, have none
- This mismatch between the generation models and conditional generation models makes the pre-trained model usage for translation decoder pretty tricky

PART2: Monolingual Pre-training for NMT

- The Bronze Age
 - NMT initialized with word2vec [ACL 2017, NAACL 2018, AI 2020]
 - NMT initialized with language model [EMNLP 2017]
- BERT fusion
 - BERT Incorporating methods [ICLR 2020, AAAI 2020a]
 - BERT Tuning methods [AAAI 2020b]
- Unified sequence to sequence pre-training
 - MASS: Masked Sequence-to-Sequence Pre-training [ICML 2019]
 - BART: Denoising Sequence-to-Sequence Pre-training [ACL 2020]

MASS: Pre-train for Sequence to Sequence Generation

 MASS is carefully designed to jointly pre-train the encoder and decoder

- Mask k consecutive tokens (segment)
 - encoder-decoder attention
 - Develop the decoder with the ability of language modeling

- Force the decoder to attend on the source representations, i.e.,

Length	Probability	Model
$k = 1$ $k \in [1, m]$	$\begin{vmatrix} P(x^u x^{\setminus u}; \theta) \\ P(x^{u:v} x^{\setminus u:v}; \theta) \end{vmatrix}$	masked LM in BERT MASS

MASS: Pre-train for Sequence to Sequence Generation, [Song et al ICML 2019]

MASS vs. BERT/GPT

Length	Probability	Model
$k = m$ $k \in [1, m]$	$ \begin{vmatrix} P(x^{1:m} x^{\backslash 1:m};\theta) \\ P(x^{u:v} x^{\backslash u:v};\theta) \end{vmatrix} $	standard LM in GPT MASS

Unsupervised NMT

MASS: Pre-train for Sequence to Sequence Generation, [Song et al ICML 2019]

Low-resource NMT

MASS: Pre-train for Sequence to Sequence Generation, [Song et al ICML 2019]

- Advantages
 - Unified sequence-to-sequence pretraining which jointly pretrains encoder, decoder and cross attention
 - Achieves improvements on zero-shot / unsupervised NMT
- Limitions
 - No experiments on rich resource NMT – Pretraing objective inconsistent with NMT, e.g. monolingual v.s. multilingual

MASS: Pre-train for Sequence to Sequence Generation, [Song et al ICML 2019]

BART: Denoising Sequence-to-Sequence

Allows to apply any type of document corruption.

A schema comparison with BERT, GPT and BART.

BÇDE sformer architecture then optimizing a reconstruction

- Token masking: Random tokens are sampled and replaced with [MASK]
- Token deletion: Random tokens are deleted from the input.
- Text infilling: A number of span are sampled. Each span is replaced with [MASK]. O-length span corresponding the insertion of [MASK].
- Sentence permutation: Sentences are shuffled with random order.
- Document Rotation: A token is chosen uniformly at random, and the document is rotated so that it begins with that token.

Noising the input

- Token masking: Random tokens are sampled and replaced with [MASK]
- Token deletion: Random tokens are deleted from the input.
- Text infilling: A number of span are sampled. Each span is replaced with [MASK]. 0-length span corresponding the insertion of [MASK].
- Sentence permutation: Sentences are shuffled with random order. Document Rotation: A token is chosen uniformly at random, and the document is rotated so that it begins with that token.

Noising the input

- Token masking: Random tokens are sampled and replaced with [MASK] Token deletion: Random tokens are deleted from the input.
- Text infilling: A number of span are sampled. Each span is replaced with [MASK]. O-length span corresponding the insertion of [MASK].
- Sentence permutation: Sentences are shuffled with random order. Document Rotation: A token is chosen uniformly at random, and the document is rotated so that it begins with that token.

Noising the input

- Token masking: Random tokens are sampled and replaced with [MASK]
- Token deletion: Random tokens are deleted from the input.
- Text infilling: A number of span are sampled. Each span is replaced with [MASK]. O-length span corresponding the insertion of [MASK].
- Sentence permutation: Sentences are shuffled with random order. Document Rotation: A token is chosen uniformly at random, and the document is rotated so that it begins with that token.

Noising the input

- Token masking: Random tokens are sampled and replaced with [MASK]
- Token deletion: Random tokens are deleted from the input.
- Text infilling: A number of span are sampled. Each span is replaced with [MASK]. O-length span corresponding the insertion of [MASK].
- Sentence permutation: Sentences are shuffled with random order.
- Document Rotation: A token is chosen uniformly at random, and the document is rotated so that it begins with that token.

Noising the input

Fine-Tune on Neural Machine Translation

- The new encoder uses a separate vocabulary from the original BART mode
- First, freeze BART parameters and only update the randomly initialized source encoder. Then, jointly tuning with a few steps.

Replace BART's encoder embedding layer with a new randomly initialized encoder

Results on NMT

- Results on IWSLT 2016 En->Ro augmented with backtranslation data
- 6 layer of additional transformer encoder to encoding Romania representation.
- *MASS reports unsupervised results

PART III: Multilingual Pre-training for NMT

PART 3: Multilingual Pre-training for NMT

- Multilingual fused pre-training

 - Alternating Language Modeling Pre-training [AAAI, 2020]
 - XLM-T: Cross-lingual Transformer Encoders
- Multilingual sequence to sequence pre-training
 - mBART [TACL, 2020]
 - CSP [EMNLP, 2020]
 - mRASP & mRASP2 [EMNLP, 2020] [ACL, 2021]
 - LaSS: Learning language-specific sub-network via pre-training & fine-tuning [ACL, 2021]

- Cross-lingual Language Model Pre-training [NeurlPS, 2019]

Multi-lingual Pre-training for NMT

- Data scarcity for low/zero resource languages.
- <u>Transfer knowledge</u> between languages.

o resource languages. Veen languages.

Cross-lingual Language Model Pretraining

Learning cross-lingual representation

Cross-lingual Language Model Pre-training, [Conneau et al NeurIPS 2019]

Multiple masked language model (MLM)

Similar to BERT, but in many languages... Multilingual representations emerge from a single model trained on many languages

Multilingual Masked language modeling pretraining

Translation language model (TLM)

MLM is unsupervised, but TLM leverages parallel data... Encourage the model to learn cross-lingual context when predicting

Translation language modeling (TLM) pretraining

Results on Unsupervised Machine Translation

Initialization is key in unsupervised MT to bootstrap the iterative BT process

Full Transformer model initialization significantly improves performance (+7 BLEU)

Results on supervised machine translation

- Pre-training is important for translation
 - Pre-training both encoder and decoder improves
 - MLM is better than CLM
 - Back translation + Pretraining achieve the best

Ablation study

- Adding more languages improves performance on lowresource languages due to positive knowledge transfer
- other languages (capacity allocation problem)

 Sampling batches more often in some languages improves performance in these languages but decrease performance in

- Cross-lingual language model pre-training is very effective for NMT
- and supervised MT
- Encourage knowledge transfer across languages is promising

Pre-training reduces the gap between unsupervised

Alternating Language Modeling for Cross-Lingual Pre-Training

Sentence level mixing

- different languages

ALM extend TLM in a sentence, which alternately predicts words of

ALM can capture the rich cross-lingual context of words and phrases

Overview of ALM pre-training

- Dataset
 - Original parallel data to generate 20 times code-switched sentences
 - Separately obtain the alternating language sentences of source language and target language, which are 40 times than original data
 - Totally, 1.5 billion code-switched sentences are used for pre-training
- Model
 - Transformer big
 - Reload the parameters of ALT for both encoder and decoder. The cross-lingual attention parameters are randomly initialized.

$En \rightarrow De$

Transformer (Vaswani et al. 2017) ConvS2S (Gehring et al. 2017) Weighted Transformer (Ahmed, Keskar, and Socher 2017) Layer-wise Transformer (He et al. 2018) RNMT+ (Chen et al. 2018)

mBERT (Devlin et al. 2019) MASS (Song et al. 2019) XLM (Lample and Conneau 2019)

ALM (this work)

- mBERT: extends the BERT model to different languages
- the sentence.

Results

29.22	ALM (this work)	35.5
28.88	XLM (Lample and Conneau 2019)	35.2
28.92	MASS (Song et al. 2019)	35.14
28.64	mBERT (Devlin et al. 2019)	34.82
28.50	Layer-wise Transformer (He et al. 2018)	35.0
29.01	Advsoft (Wang, Gong, and Liu 2019)	35.1
28.90	DynamicConv (Wu et al. 2019)	35.2
25.16	LightConv (Wu et al. 2019)	34.8
28.40	Transformer (Vaswani et al. 2017)	34.4
BLEU(%)	$De \rightarrow En$	BLEU

• XLM: the most related work. The results are implemented with released code. Mass: set the fragment length k as 50% of the total number of masked tokens in

omly shuffle the full parallel training set in the task of IWSLT14 an-to-English translation dataset. Then, extract the random amples as the fine-tuned parallel data urprise, the improvements of ALM is larger for low resource

Alternating Language Modeling for Cross-Lingual Pre-Training [Yang et al AAAI 2020]

Results

Visualization of word (

Mixing Chinese words and English words can draw the distribution of source language and target language in a same space

Alternating Language Modeling for Cross-Lingual Pre-Training [Yang et al AAAI 2020]

- encoders
- Fine-tune the model on multilingual parallel data

XLM-T: Scaling up Multilingual Machine Translation with Pretrained Cross-lingual Transformer Encoders [Ma et al, 2020]

Initialize MT encoder and decoder with pre-trained cross-lingual

$X \rightarrow En$	Fr	Cs	De	Fi	Lv	Et	Ro	Hi	Tr	Gu	Avg
Train on Original Pa	arallel I	Data (B	itext)								
Bilingual NMT	36.2	28.5	40.2	19.2	17.5	19.7	29.8	14.1	15.1	9.3	23.0
Many-to-One	34.8	29.0	40.1	21.2	20.4	26.2	34.8	22.8	23.8	19.2	27.2
XLM-T	35.9	30.5	41.6	22.5	21.4	28.4	36.6	24.6	25.6	20.4	28.8
Many-to-Many	35.9	29.2	40.0	21.1	20.4	26.3	35.5	23.6	24.3	20.6	27.7
XLM-T	35.5	30.0	40.8	22.1	21.5	27.8	36.5	25.3	25.0	20.6	28.5
Train on Original Pa	arallel I	Data an	d Back	x-Trans	lation	Data (E	Sitext+1	3 <i>T</i>)			
(Wang et al., 2020)	35.3	31.9	45.4	23.8	22.4	30.5	39.1	28.7	27.6	23.5	30.8
Many-to-One	35.9	32.6	44.1	24.9	23.1	31.5	39.7	28.2	27.8	23.1	31.1
XLM-T	36.0	33.1	44.8	25.4	23.9	32.7	39.8	30.1	28.8	23.6	31.8
(Wang et al., 2020)	35.3	31.2	43.7	23.1	21.5	29.5	38.1	27.5	26.2	23.4	30.0
Many-to-Many	35.7	31.9	43.7	24.2	23.2	30.4	39.1	28.3	27.4	23.8	30.8
XLM-T	36.1	32.6	44.3	25.4	23.8	32.0	40.3	29.5	28.7	24.2	31.7

- are worse on the high-resource languages
- In the back-translation setting, XLM-T can further improve this strong baseline

• The multilingual models achieve much better performance on the low-resource languages and

• XLM-T achieves significant improvements over the multilingual baseline across all 10 languages

$X \rightarrow En$	Fr	Cs	De	Fi	Lv	Et	Ro	Hi	Tr	Gu	Avg
Train on Original Pa	arallel I	Data (B	itext)								
Bilingual NMT	36.2	28.5	40.2	19.2	17.5	19.7	29.8	14.1	15.1	9.3	23.0
Many-to-One XLM-T	34.8 35.9	29.0 30.5	40.1 41.6	21.2 22.5	20.4 21.4	26.2 28.4	34.8 36.6	22.8 24.6	23.8 25.6	19.2 20.4	27.2 28.8
Many-to-Many XLM-T	35.9 35.5	29.2 30.0	40.0 40.8	21.1 22.1	20.4 21.5	26.3 27.8	35.5 36.5	23.6 25.3	24.3 25.0	20.6 20.6	27.7 28.5
Train on Original Pa	ırallel I	Data an	d Back	-Trans	lation I	Data (E	Sitext+1	BT)			
(Wang et al., 2020) Many-to-One	35.3 35.9	31.9 32.6	45.4 44.1	23.8 24.9	22.4 23.1	30.5 31.5	39.1 39.7	28.7 28.2	27.6 27.8	23.5 23.1	30.8 31.1
XLM-1	36.0	33.1	44.8	25.4	23.9	32.1	39.8	30.1	28.8	23.6	31.8
(Wang et al., 2020) Many-to-Many	35.3 35.7	31.2 31.9	43.7 43.7	23.1 24.2	21.5 23.2	29.5 30.4	38.1 39.1	27.5 28.3	26.2 27.4	23.4 23.8	30.0 30.8
XLM-T	36.1	32.6	44.3	25.4	23.8	32.0	40.3	29.5	28.7	24.2	31.7

- are worse on the high-resource languages
- In the back-translation setting, XLM-T can further improve this strong baseline

• The multilingual models achieve much better performance on the low-resource languages and

• XLM-T achieves significant improvements over the multilingual baseline across all 10 languages

$En \rightarrow X$	Fr	Cs	De	Fi	Lv	Et	Ro	Hi	Tr	Gu	Avg		
Train on Original Parallel Data (Bitext)													
Bilingual NMT	36.3	22.3	40.2	15.2	16.5	15.0	23.0	12.2	13.3	7.9	20.2		
One-to-Many XLM-T	34.2	20.9 21.4	40.0	15.0 15.4	18.1 18 7	20.9 20.9	26.0 26.6	14.5 15 8	17.3 17.4	13.2 15.0	22.0 22.6		
Many-to-Many	34.2	21.0	39.4	15.2	18.6	20.4	26.1	15.0	17.2	13.1	22.0		
XLM-T	34.2	21.4	39.7	15.3	18.9	20.6	26.5	15.6	17.5	14.5	22.4		
Train on Original Pa	arallel I	Data an	nd Back	z-Trans	lation	Data (B	Sitext+1	3 <i>T</i>)					
(Wang et al., 2020)	36.1	23.6	42.0	17.7	22.4	24.0	29.8	19.8	19.4	17.8	25.3		
One-to-Many	36.8	23.6	42.9	18.3	23.3	24.2	29.5	20.2	19.4	13.2	25.1		
XLM-T	37.3	24.2	43.6	18.1	23.7	24.2	29.7	20.1	20.2	13.7	25.5		
(Wang et al., 2020)	35.8	22.4	41.2	16.9	21.7	23.2	29.7	19.2	18.7	16.0	24.5		
Many-to-Many	35.9	22.9	42.2	17.5	22.5	23.4	28.9	19.8	19.1	14.5	24.7		
XLM-T	36.6	23.9	42.4	18.4	22.9	24.2	29.3	20.1	19.8	12.8	25.0		

- Generally, the improvements are smaller than $X \rightarrow En$
- an expert in.

• The multilingual part of En \rightarrow X is at the decoder side, which XLM-R is not

PART 3: Multilingual Pre-training for NMT

- Multilingual fused pre-training

 - Alternating Language Modeling Pre-training [AAAI, 2020]
 - XLM-T: Cross-lingual Transformer Encoders
- Multilingual sequence to sequence pre-training
 - mBART [TACL, 2020]
 - CSP [EMNLP, 2020]
 - mRASP & mRASP2 [EMNLP, 2020] [ACL, 2021]
 - LaSS: Learning language-specific sub-network via pre-training & fine-tuning [ACL, 2021]

- Cross-lingual Language Model Pre-training [NeurlPS, 2019]

mBART: Multilingual Denoising Pre-training for Neural Machine Translation

Multilingual Denoising Pre-Training (mBART)

- Multilingual denoising pre-training (25 languages) Sentence permutation
 - -Word-span masking
- Fine-tuning on MT with special language id

Multilingual Denoising Pre-training for Neural Machine Translation [Liu et al., TACL 2020]

Fine-tuning on Machine Translation

Dataset

- Data: CC25 corpus
 - CC25 includes 25 languages from different families and with varied amounts of text from Common Crawl (CC)
 - Rebalanced the corpus by up/downsampling text

$$\lambda_i = \frac{1}{p_i} \cdot \frac{p_i^{\alpha}}{\sum_i p_i^{\alpha}},$$

- Sentence Piece which includes 25,000 subwords
- Noisy function follows BART

Code	Language	Tokens/M	Size/GB
En	English	55608	300.8
Ru	Russian	23408	278.0
Vi	Vietnamese	24757	137.3
Ja	Japanese	530 (*)	69.3
De	German	10297	66.6
Ro	Romanian	10354	61.4
Fr	French	9780	56.8
Fi	Finnish	6730	54.3
Ko	Korean	5644	54.2
Es	Spanish	9374	53.3
Zh	Chinese (Sim)	259 (*)	46.9
It	Italian	4983	30.2
NI	Dutch	5025	29.3
Ar	Arabic	2869	28.0
Tr	Turkish	2736	20.9
Hi	Hindi	1715	20.2
Cs	Czech	2498	16.3
Lt	Lithuanian	1835	13.7
Lv	Latvian	1198	8.8
Kk	Kazakh	476	6.4
Et	Estonian	843	6.1
Ne	Nepali	237	3.8
Si	Sinhala	243	3.6
Gu	Gujarati	140	1.9
My	Burmese	56	1.6

mBART: Low-medium translation results

Languages Data Source	En- WM	·Gu IT19	En- WM	-Kk IT19	En IWS	-Vi LT15	En WM	-Tr [T17	En IWS	-Ja LT17	En- IWS	-Ko LT17	
Size	Size 10K		91K		133K		207K		223K		230K		
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	
Random	0.0	0.0	0.8	0.2	23.6	24.8	12.2	9.5	10.4	12.3	15.3	16.3	
mBART25	0.3	0.1	7.4	2.5	36.1	35.4	22.5	17.8	19.1	19.4	24.6	22.6	
Languages	En	-NI	En	-Ar	En	-It	En-	·My	En	-Ne	En	-Ro	
Data Source	Data SourceIWSLT17Size237K		IWS	IWSLT17		IWSLT17		WAT19		FLoRes		WMT16	
Size			250K		250K		259K		564K		608K		
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	
Random	34.6	29.3	27.5	16.9	31.7	28.0	23.3	34.9	7.6	4.3	34.0	34.3	
mBART25	43.3	34.8	37.6	21.6	39.8	34.0	28.3	36.9	14.5	7.4	37.8	37.7	
Languages	En	-Si	En	-Hi	En	-Et	En	-Lt	En	-Fi	En	-Lv	
Data Source	FLo	Res	IT	ТВ	WM	[T18]	WM	[T19	WM	[T17	WM	[T17]	
Size	64	7K	1.5	6M	1.9	4M	2.1	1 M	2.6	6M	4.5	0M	
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	
Random	7.2	1.2	10.9	14.2	22.6	17.9	18.1	12.1	21.8	20.2	15.6	12.9	
mBART25	13.7	3.3	23.5	20.8	27.8	21.4	22.4	15.3	28.5	22.4	19.3	15.9	

Low resource: more than 6 BLEU. But fails in extremely low-resource setting

mBART: Low-medium translation results

Languages Data Source	En- WM	-Gu IT19	En WM	-Kk IT19	En IWS	-Vi LT15	En WM	-Tr [T17	En IWS	-Ja LT17	En- IWS	-Ko LT17
Size	10K		91K		133K		207K		223K		230K	
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow
Random	0.0	0.0	0.8	0.2	23.6	24.8	12.2	9.5	10.4	12.3	15.3	16.3
mBART25	0.3	0.1	7.4	2.5	36.1	35.4	22.5	17.8	19.1	19.4	24.6	22.6
Languages	En-Nl		En	-Ar	En	-It	En-	My	En	-Ne	En-Ro	
Data Source	ata Source IWSLT17 Size 237K		IWS	IWSLT17 250K		IWSLT17 250K		T19	FLoRes		WMT16	
Size			25					259K		564K		608K
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow
Random	34.6	29.3	27.5	16.9	31.7	28.0	23.3	34.9	7.6	4.3	34.0	34.3
mBART25	43.3	34.8	37.6	21.6	39.8	34.0	28.3	36.9	14.5	7.4	37.8	37.7
Languages	En	-Si	En	-Hi	En	-Et	En	-Lt	En	-Fi	En	-Lv
Data Source	FLo	Res	IT	ТВ	WM	[T18]	WM	[T19	WM	[T17	WM	[T17
Size	Size 647K		1.5	6M	1.9	4M	2.1	1 M	2.6	6M	4.5	0M
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow
Random	7.2	1.2	10.9	14.2	22.6	17.9	18.1	12.1	21.8	20.2	15.6	12.9
mBART25	13.7	3.3	23.5	20.8	27.8	21.4	22.4	15.3	28.5	22.4	19.3	15.9

Low resource: more than 6 BLEU. But fails in extremely low-resource setting

Medium resource: more than 3 BLEU

mBART: Rich-resource translation

Languages	Cs	Es	Zh	De	Ru	Fr
Size	11M	15M	25M	28M	29M	41M
Random mBART25	16.5 18.0	33.2 34.0	35.0 33.3	30.9 30.5	31.5 31.3	41.4 41.0

- available.
- supposed to wash out the pre-trained weights completely.

Pre-training slightly hurts performance when >25M parallel sentence are

• When a significant amount of bi-text data is given, supervised training are

mBART: Pre-training complementary to BT

- Test on low resource FLoRes dataset [Guzmán et al., 2019]
- Use the same monolingual data to generate BT data
- Initializing the model with mBART25 pre-trained parameters improves BLEU scores at each iteration of back translation, resulting in new state-of-the-art results in all four translation directions

Is pre-training on multilingual better than on single language?

Pre-traini	ng	Fi	Fine-tuning						
Model	Data	En→Ro	Ro → En	+BT					
Random	None	34.3	34.0	36.8					
XLM (2019)	En Ro	_	35.6	38.5					
MASS (2019)	En Ro	_	-	39.1					
BART (2019)	En	_	-	38.0					
XLM-R (2019)	CC100	35.6	35.8	-					
BART-En	En	36.0	35.8	37.4					
BART-Ro	Ro	37.6	36.8	38.1					
mBART02	En Ro	38.5	38.5	39.9					
mBART25	CC25	37.7	37.8	38.8					

- BART model trained on the same En and Ro data only. Both have improvements over essential.
- mBART02 is better than mBART25. The more seems not the better?

baselines, while worse than mBART results, indicating pre-training in a multilingual setting is

Combining BT leads to additional gains, resulting in a new state-of-the-art for Ro-En translation

How many languages should you pre-train on?

Languages	De	Ro	It	My	
Size/GB	66.6	61.4	30.2	1.6	3
mBART02	31.3	38.5	39.7	36.5	
mBART06	-	38.5	39.3	-	
mBART25	30.5	37.7	39.8	36.9	

- Pretraining on more languages helps most when the target language monolingual data is limited
- When monolingual data is plentiful (De, Ro), pre-training on multiple languages slightly hurts the final results (<1 BLEU)

Analysis: Pre-training steps matters

- Without any pre-training, the model overfits and performs much worse than the baseline
- After just 25K steps (5% of training), both models outperform the best baseline.
- The models keep improving by over 3 BLEU fo 500K steps.
- The more the better

d performs much worse than the baseline els outperform the best baseline.

• The models keep improving by over 3 BLEU for the rest of steps and have not fully converged after

Analysis: Perform better on low resource

- The pre-trained model is able to achieve over 20 BLEU with only 10K training examples, while the baseline system scores 0.

 Unsurprisingly, mBART consistently outperforms the baseline models, but the gap reduces with increasing amounts of bi-text, especially after 10M sentence pairs

Analysis: Generalization to unseen languages

	Monolingual	Nl-En	En-Nl	Ar-En	En-Ar	Nl-De	De-Nl
Random	None	34.6 (-8.7)	29.3 (-5.5)	27.5 (-10.1)	16.9 (-4.7)	21.3 (-6.4)	20.9 (-5.2)
mBART02 mBART06	En Ro En Ro Cs It Fr Es	41.4 (-2.9) 43 1 (-0.2)	34.5 (-0.3) 34.6 (-0.2)	34.9 (-2.7)	21.2 (-0.4) 21.1 (-0.5)	26.1 (-1.6) 26.4 (-1.3)	25.4 (-0.7)
mBART25	All	43.3	34.8	37.6	21.6	27.7	26.1

NI-De and Ar are not included in the pre-training corpus

- appear in the pre-training corpora,
- Pre-training has language universal aspects, especially within the parameters learned at the Transformer layers.
- The more pre-trained languages the better

• mBART can improve performance even with fine tuning for languages that did not

Unsupervised Machine Translation

UNMT with back translation

- with the pre-trained mBART
- tokens in target language
- Achieve very competitive results

	Similar Pairs				Dissimilar Pairs			
Model	En-De		En-Ro		En-Ne		En-Si	
	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow
Random	21.0	17.2	19.4	21.2	0.0	0.0	0.0	0.0
XLM (2019)	34.3	26.4	31.8	33.3	0.5	0.1	0.1	0.1
MASS (2019)	35.2	28.3	33.1	35.2	-	-	-	-
mBART	34.0	29.8	30.5	35.0	10.0	4.4	8.2	3.9

• Following the same procedure with UNMT, but initialize the translation model

To avoid simply copying the source text, constrain mBART to only generating

CSP: Code-Switching Pre-training for Neural Machine Translation

- Sequence-level pre-training with only monolingual data
- Sub-span of the source sentence is replaced with their lexical translation

The training paradigm follows MASS

Lexical translation is build with only monolingual data. [Learning bilingual word embeddings with (almost) no bilingual data.]

CSP: Code-Switching Pre-training for Neural Machine Translation

System

Yang et al. (2018) Lample et al. (2018b)

Lample and Conneau (2019) Song et al. (2019b)

Lample and Conneau (2019) (our reprod Song et al. (2019b) (our reproduction **CSP** and fine-tuning (ours)

System

Vaswani et al. (2017)

Vaswani et al. (2017) (our reproduct Lample and Conneau (2019) (our reprod Song et al. (2019b) (our reproduction

CSP and fine-tuning (ours) /

	en-de	de-en	en-fr	fr-en	zh-en
	10.86 17.16	14.62 21.0	16.97 25.14	15.58 24.18	14.52 -
	27.0 28.1	34.3 35.0	33.4 37.5	33.3 34.6	-
duction) on)	27.3 27.9 28.7	33.8 34.7 35.7	32.9 37.3 37.9	33.5 34.1 34.5	22.1 22.8 23.9

	en-de	en-fr	zh-en
	27.3	38.1	-
tion) / + BT	27.0 / 28.6	37.9 / 39.3	42.1 / 43.7
duction) / + BT	28.1 / 29.4	38.3 / 39.6	42.0 / 43.7
on) / + BT	28.4 / 29.6	38.4 / 39.6	42.5 / 44.1
+ BT	28.9 / 30.0	38.8 / 39.9	43.2 / 44.6

mRASP: multilingual Random Aligned Substitution Pre-training

- mRASP: multilingual Random Aligned Substitution **Pre-training**
 - Multilingual Pre-training Approach RAS: specially designed training method to align
 - semantic embeddings

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

mRASP: Overview

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

mRASP: Overview

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

Random Aligned Substitution (RAS)

- Randomly replace a source word to its synonym in different language.
- Draw the embedding space closer.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

mRASP: RAS method

Training Data for mRASP Pre-training Dataset: PC32 (Parallel Corpus 32)

- - 32 English-centric language pairs, resulting in 64 directed translation pairs in total

- Contains a total size of 110.4M public parallel sentence pairs # of En-X sentence pairs

mRASP: Fine-tuning Dataset

- Fine-tuning Dataset
- Indigenous Corpus: included in pre-training phase Extremely low resource (<100K) (Be, My, etc.) Low resource(>100k and <1M) (He, Tr, etc.) Medium resource (>1M and <10M) (De, Et, etc.) Rich resource (>10M) (Zh, Fr, etc.)

mRASP: Rich resource works

mRASP: Low resource works

Low Resource Directions

mRASP: Unseen languages

• mRASP generalizes on all exotic scenarios.

		Fr-Zh(20K)		De-Fr(9M)		
		->	<—	->	<—	
Exotic Pair	Direct	0.7	3	23.5	21.2	
	mRASP	25.8	26.7	29.9	23.4	
		NI-Pt(12K)		Da-El(1.2M)		
		->	<	->	<	
Exotic Full	Direct	0.0	0.0	14.1	16.9	
	mRASP	14.1	13.2	17.6	19.9	
		En-Wir(11K)		En-Gl(1.2M)		
		->	<	->	<	
	Direct	6.4	6.8	8.9	12.8	
	mRASP	22.7	22.9	32.1	38.1	
Exotic Source/		En-Eu(726k)		En-SI(2M)		
Target		->	<—	->	<	
	Direct	7.1	10.9	24.2	28.2	
	mRASP	19.1	28.4	27.6	29.5	
: Direct not work VS mRASP achieves 10+ BLE						

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

mRASP: Compare with other methods

mRASP outperforms mBART for all but two language pairs.

mRASP: Makes multilingual embeddings more similar

RAS draws the embedding space of languages closer.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]

mRASP w/o RAS

mRASP 2: Contrastive Learning for Many-to-many Multilingual Neural Machine **Translation**

Leveraging both parallel & monolingual data

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]

mRASP2 introduces monolingual data

• Parallel text

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]

mRASP2 maps different languages in a same space

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]

Monolingual Corpus mainly contributes to unsupervised translation

Experiments

Better Semantic Alignment: Sentence Retrieval

Averaged Retrieval acc

15-way parallel test set(Ted-M): 2284 samples

Contrastive Learning and Aligned Augmentation both contribute to the improvement on sentence retrieval

Learning Language Specific Sub-network for Multilingual Machine Translation

- - Each language pair has shared parameters with some other language pairs and preserves its language-specific parameters
 - For fine-tuning, only updates the corresponding parameters

LaSS accommodates one sub-network for each language pair.

LaSS obtains consistent gains for both Transformer-base and Transformer-big

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]

With the dataset scale increasing, the improvement becomes larger, since rich resource language pairs suffer more from parameter interference

Adaptation to New Language Pairs Distribute a new sub-network for new language pair

and train the sub-network for fixed steps

30 D B T E O 20

10

750 1000 250 500 ()**Steps** Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]

Adaptation to New Language Pairs Distribute a new sub-network for new language pair

and train the sub-network for fixed steps

LaSS reaches the bilingual model performance with fewer steps.

10

BLE

Adaptation to New Language Pairs

 Distribute a new sub-network for new language pair and train the sub-network for fixed steps

LaSS hardly drops on existing language pairs

Adaptation to New Language Pairs

 Distribute a new sub-network for new language pair and train the sub-network for fixed steps

easy adaptation is attributed to the language specific sub-network

Only updates the corresponding parameters avoids catastrophic forgetting

30 Dala BLEU SU

The top deals with output projection layer and the bottom is related to embedding layer, which are both language-specific.

Mask similarity is positively correlated to language family

Similar languages tends to group together for both $En \rightarrow X$ and $X \rightarrow En$

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]

Summary for Multilingual Pre-training

- Multilingual fused pre-training
 - Training encoder on masked sequences composed of multiple language, concatenated or mixed words.
- Multilingual sequence-to-sequence pre-training
 - mBart: Recover original sentence from noised ones in multiple languages.
 - mRASP & mRASP2: augmenting data with randomly substitute of words from bilingual lexicon + monolingual reconstruction + contrastive learning
 - LaSS: use pre-training and fine-tuning to discover languagecommon sub-nets and language-specific sub-nets for MT

PART IV: Pre-training for Speech Translation

Speech-to-Text Translation(ST) source language speech(audio) -> target lang text

Application Type

- (Non-streaming) ST e.g. video translation
- Streaming ST e.g. realtime conference translation

System

 Cascaded ST End-to-end ST

- Challenges: **1.Computationally inefficient 2.Error propagation**: Wrong transcription **Wrong translation**

do at this and see if it works for you 🖸 这样做,看看它是否对你有用

End-to-end ST Model

- Single model to produce text translation from speech • Basic model: Encoder-Decoder architecture (e.g. Transformer)
- Advantage:
 - Reduced latency, simpler deployment
 - Avoid error propagation

[1] Bérard et al., Listen and translate: A proof of concept for end-to-end speech-to-text translation. 2016

Basic Speech Translation Model (Same as MT)

Transformer-based: N-layer convolution + attention encoder, M-layer decoder Training data: <audio seq., translation text>

Challenge

- Data scarcity lack of large parallel audio-translation corpus
- Modality disparity between audio and text
- Performance gap of direct ST:
 BLEU: ST 18.6 vs. MT 36.2 (on MuST-C En-De)

Pre-training for Speech Translation

- MT Pre-training
 - Decoder initialization from separately trained MT model
 - Single-modal(audio) Encoder-Decoder: COSTT[Dong et al, AAAI 2021b]
- ASR Pre-training
 - Curriculum Pre-training [Wang et al, ACL 2020]
 - LUT [Dong et al, AAAI 2021a]
- Audio Pre-training
 - Wav2vec & Wav2Vec2.0 [Schneider et al. Interspeech 2019, Baevski et al NeurIPS2020]
 - Apply to ST [Wang et al, 2021, Zhao et al, ACL 2021, Wang et al, Interspeech 2021]
- Raw Text Pre-training - LUT [Dong et al, AAAI 2021a]
- Bi-modal Pre-training
 - TCEN-LSTM [Wang et al, AAAI 2020]
 - Chimera [Han et al, ACL 2021a]
 - XSTNet [Ye et al, Interspeech 2021]
 - Wav2vec2.0 + mBart + Self-training [Li et al, ACL 2021b]
 - FAT-ST [Zheng et al, ICML 2021]

Using external Parallel Text

Dataset size ST vs MT

How to use MT data with much larger scale to improve ST performance?

End-to-End Speech Translation with Knowledge Distillation [Liu et al, Interspeech 2019]

Pre-train ST's decoder with full MT

Decoder ==> translation Encoder -> Decoder ==> transcribe and translation

Compressed Encoder

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]¹⁴⁸

- How to make a single model's decoder to perform text translation?

Transcription **– Trans**lation

Step 2: Train encoder w/ shrinking module using CTC

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]¹⁴⁹

COSTT for **ST**

Step1: Pre-train using external MT corpus

Translation: Transcript : "Good morning" "Bonjour"

Cross-Entropy loss

Transcription-Translation Decoder

Step 3: Train full model on ST data <audio, transcript, translation>

Advantages of COSTT

- Unified training with both transcript and translation text
- Reduced encoder output size with CTC-guided shrinking
- Able to pre-train the decoder with external MT parallel data

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]¹⁵⁰

Dataset size ST vs ASR

Using external ASR data

How to use larger external ASR data to improve ST performance?

IWSLT & Librispeech

ASR Pre-training helps ST

Dataset size ST vs Raw text

Raw Text Pre-training

Using pre-trained LM in decoding weighting is easy!

But

How to use pre-trained **BERT** to improve ST performance?

English Wiki

BookCorpus

Drawbacks of the Encoder-Decoder Structure

1. A single encoder is hard to capture the representation of audio for the translation. 2. Limited in utilizing the information of "transcription" in the training.

Motivation: Mimic human's behavior Question: How human translate?

"Listen-Understand-Translate" human's behavior

"Listen-Understand-Translate" (LUT) model based motivated by

Motivation of Better Encoding

"transcript" to learn the semantic feature.

Listen, Understand and Translate [Q. Dong, R. Ye, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]

LUT: Utilizing Pre-trained Model on Raw Text

Training data: triples of

<speech, transcript text, translate text>

Listen, Understand and Translate [Q. Dong, R. Ye, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]

ST Benefits from BERT, with Raw Text Pre-training

IWSLT & Librispeech

Listen, Understand and Translate [Dong et al, AAAI 2021]

Audio Pre-training Dataset size ST vs raw Audio

How to use larger <u>raw audio</u> data to improve ST performance?

Wav2Vec: Self-supervised Speech Representation Learning

CNN

CNN

x9

x5

high-level context state c, each frame ~ 210ms, stride10ms

Low level acoustic state h, each frame ~ 30 ms, stride10ms

Training data: LibriSpeech 960 hrs audio only

Minimize contrastive loss

 $L = -\sum \left(\log \sigma(z_{t+1} \cdot h_t) + \sum \log \sigma(-z_{-} \cdot h_t) \right)$

Bring closer context and acoustic state

Bring further context and negative sampled $-M_{M}M_{M}$ acoustic state

Wav2Vec2.0: Contrastive on quantized acoustic state

Transformer

Encoder

CNN

Masked context during training

Quantized low-level acoustic state, each frame ~ 25ms, stride 20ms

 $-m_{M}$ Wav2vec2.0: a Framework for Self-Supervised Learning of Speech Representations [Baevski et al, NeurIPS 2020]¹⁶²

X7

Training data: (audio only) LibriSpeech 960 hrs LibriVox 53k hrs

Minimize contrastive loss

 $L = -\sum \log \frac{\exp Sim(c_t, q_t)}{\sum \exp Sim(c_t, q_-)} + \text{penalty}$

Bring closer masked context and quantized acoustic state

[1] Self-supervised Representations improve end-to-end speech translation [Wu et al. InterSpeech 2020] [3] End-to-end Speech Translation [Ye et al. InterSpeech 2021] [2] NeurST toolkit [Zhao et al ACL2021 demo]

[1] CoVoST 2 and Massively Multilingual Speech-to-Text Translation, [Wang et al InterSpeech 2021] [2] Large-Scale Self- and Semi-Supervised Learning for Speech Translation [Wang et al. 2021]

1	7.	5
5.	4	

Bimodal Pre-training with Audio & MT data

- Chimera: Learning Fixed-size Shared Space for both audio and text, audio+MT pretraining [Han et al. 2021]
- XSTNet: Bring speech sequence to roughly similar length to text, then Pre-training & progressive multi-task finetuning [Ye et al. 2021]
- Wav2vec2.0-mTransformer LNA: Use both audio pertaining + multilingual pertained language model, and selective efficient fine-tuning [Li et al. ACL 2021]
- FAT-ST: Masked pre-training for fused audio and text [Zheng et al. ICML 2021]

Bi-modal Encoding Architecture for ST

Audio input

- Challenges: gap between text and audio 1. Length: ~ 20 (text) vs. $\sim 1k-10k$ (audio) 2. Embedding space disparity

Insights from Cognitive Neuroscience

Speech and text interfere with each other in brain^[1]

[1] Van Atteveldt, Nienke, et al. "Integration of letters and speech sounds in the human brain." Neuron 43.2 (2004): 271-282. [2] Spitsyna, Galina, et al. "Converging language streams in the human temporal lobe." Journal of Neuroscience 26.28 (2006): 7328-7336.

processing paths <u>Convergence sites</u> of *speech* (blue) and *text* (yellow)

Idea: Bridging the Speech-Text modality gap with Shared Semantic Representation

ST triple data:

<speech, transcript text, translate text>

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]

Chimera Model for ST

Training with auxiliary objectives: ST + MT + Contrastive loss Benefit: able to exploit large external MT data

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]

Chimera achieves the best (so far) BLEU on all languages in MuS

Madal	External Data				MuST-C EN-X						
Niodei	Speech	ASR	MT	EN-DE	EN-FR	EN-RU	EN-ES	EN-IT	EN-RO	EN-PT	EN-N
FairSeq ST [†]	×	×	×	22.7	32.9	15.3	27.2	22.7	21.9	28.1	27.3
Espnet ST [‡]	\times	\times	×	22.9	32.8	15.8	28.0	23.8	21.9	28.0	27.4
AFS *	\times	×	×	22.4	31.6	14.7	26.9	23.0	21.0	26.3	24.9
Dual-Decoder \diamond	\times	×	\times	23.6	33.5	15.2	28.1	24.2	22.9	30.0	27.6
STATST [#]	×	×	×	23.1	-	-	-	-	-	-	-
MAML ^b	×	×	\checkmark	22.1	34.1	-	-	-	-	-	-
Self-Training °	\checkmark	\checkmark	×	25.2	34.5	-	-	-	-	-	-
W2V2-Transformer *	\checkmark	×	×	22.3	34.3	15.8	28.7	24.2	22.4	29.3	28.2
Chimera Mem-16	\checkmark	Х	\checkmark	25.6	35.0	16.7	30.2	24.0	23.2	29.7	28.5
Chimera	\checkmark	×	\checkmark	27.1 •	35.6	17.4	30.6	25.0	24.0	30.2	29.2

Learning Shared Semantic Space for Speech-to-Text Translation [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]

- C

Ĺ

Cross Speech-Text Network (XSTNet)

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

Supports to train MT data

Markov Transformer MT model

We can add <u>more external MT data</u> to train Transformer encoder & decoder

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

Supports inputs of two modalities

✓ Wav2vec2.0[™] as the acoustic encoder We add two convolution layers with 2-stride to shrink the length.

[1] wav2vec 2.0: A framework for self-supervised learning of speech representations, 2020

Language indicator strategy

 We use language indicators to distinguish different tasks.

Tasks	Source input
MT	<en> This is a book.</en>
ASR	<audio></audio>
ST	<audio></audio>

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

Target output

<fr>> c'est un livre.

<en> This is a book.

<fr>> c'est un livre.

Progressive Multi-task Training

Large-scale MT pre-training Using external MT D_{MT-ext} # Multi-task Finetune Using (1) external MT D_{MT-ext} (2) D_{ST} with <speech, translation> (3) D_{ASR} with <speech, transcript>

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

XSTNet achieves State-of-the-art Performance

Models	External Data	Pre-train Tasks	De	Es	Fr	It	NI	Pt	Ro	Ru
Transformer ST [13]	×	ASR	22.8	27.4	33.3	22.9	27.2	28.7	22.2	15.1
AFS [31]	×	×	22.4	26.9	31.6	23.0	24.9	26.3	21.0	14.7
Dual-Decoder Transf. [15]	×	×	23.6	28.1	33.5	24.2	27.6	30.0	22.9	15.2
Tang et al. [2]	MT	ASR, MT	23.9	28.6	33.1	-	-	-	-	-
FAT-ST (Big) [6]	ASR, MT, mono-data [†]	FAT-MLM	25.5	30.8	-	-	30.1	-	-	-
W-Transf.	audio-only*	SSL*	23.6	28.4	34.6	24.0	29.0	29.6	22.4	14.4
XSTNet (Base)	audio-only*	SSL*	25.5	29.6	36.0	25.5	30.0	31.3	25.1	16.9
XSTNet (Expand)	MT, audio-only*	SSL*, MT	27.8 §	30.8	38.0	26.4	31.2	32.4	25.7	18.5

Table 1: Performance (case-sensitive detokenized BLEU) on MuST-C test sets. [†]: "Mono-data" means audio-only data from Librispeech, Libri-Light, and text-only data from Europarl/Wiki Text; *: "Audio-only" data from LibriSpeech is used in the pre-training of wav2vec2.0-base module, and "SSL" means the self-supervised learning from unlabeled audio data. [§] uses OpenSubtitles as external MT data.

XSTNet-Base: Achieves the SOTA in the restricted setup XSTNet-Expand: Goes better by using extra MT data

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

XSTNet better than cascaded ST! a gain of 2.6 BLE

Audio and Multilingual Text Pretrain for Multilingual ST

How are you?

Multilingual Speech Translation with Efficient Finetuning of Pretrained Models [Li et al, ACL 2021]

- Encoder uses Wav2vec2.0 pretrained on LibriVox-60k audio
- Decoder: mBart pre-trained on 50 monolingual text and 49 bitext
- ST finetune strategy (LNA):
 - Only fine-tune layer-norm and attention
- MT+ST multitask joint train with further parallel bitext data

Wav2vec2.0 retraining + Multilingual training effectively transfers to low resource source language

Multilingual Speech Translation with Efficient Finetuning of Pretrained Models [Li et al, ACL 2021]

Fused Acoustic and Text Masked Language Model (FAT-MLM)

Pre-training data 1. Librispeech

- ASR 960h
- 2. Libri-light audio 3,748h
- 3. Europarl/wiki text 2.3M
- 4. MuST-C 408h

5. Europarl MT 1.9M

Fused Acoustic and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation, [Zheng et al ICML 2021]

- Pre-train FAT-MLM with all data Init FAT-ST with FAT-MLM,
- 3 2 </s> Good Morning
- decoder copy encoder
- •Further fine-tune on MuST-C ST data.

Fused Acoustic and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation, [Zheng et al ICML 2021]

Joint audio&text Pre-training task helps ST

Pretrain Method	Models	En→De	En→Es	En→Nl	Avg.	Model Siz
	ST	19.64	23.68	23.01	22.11	31.25M
No Pretraining	ST + ASR	21.70	26.83	25.44	24.66 (+2.55)	44.82M
	ST + ASR & MT	21.58	26.37	26.17	24.71 (+2.60)	56.81M
	ST + MAM	20.78	25.34	24.46	23.53 (+1.42)	33.15M
	ST + MAM + ASR	22.41	26.89	26.49	25.26 (+3.15)	46.72M
	Liu et al. (2020b)	22.55	-	-	-	-
	Le et al. (2020)	23.63	28.12	27.55	26.43 (+4.32)	51.20M
	Cascade [§]	23.65	28.68	27.91	26.75 (+4.64)	83.79M
	FAT-ST (base).	22.70	27.86	27.03	25.86 (+3.75)	39.34M
ASR & MT	ST	21.95	26.83	26.03	24.94 (+2.83)	31.25M
	ST + ASR & MT	22.05	26.95	26.15	25.05 (+2.94)	56.81M
MAM	FAT-ST (base)	22.29	27.21	26.26	25.25 (+3.14)	39.34M
FAT-MLM	FAT-ST (base)	23.68	28.61	27.84	26.71 (+4.60)	39.34M
	FAT-ST (big)	23.64	29.00	27.64	26.76 (+4.65)	58.25M

Fused Acoustic and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation, [Zheng et al ICML 2021]

ze

82

Pre-training Improves ST Performance MuST-C Results Transformer-ST FAT-ST Chimera XSTNet

En-Fr

En-Ru

Summary

	Direct Supervision	Contrastive	Masked LM	Knowledge distillation	Progressive train	Selective Fine-tune	Self-training
MT Parallel Text	COSTT			[Liu et al. 2019]	XSTNet		
ASR Speech- Transcript	LUT						
Audio-only		Wav2vec Wav2vec 2.0					[Wang et al. 2021]
Raw text				LUT			
Speech+Text		Chimera	FAT-ST		XSTNet	LNA	

Summary for Speech Translation Pre-training

- Parallel speech translation data is scarce
- Pre-training to utilize external large data
 - MT data (Parallel text)
 - ASR data (Speech-transcript)
 - Raw text (Monolingual and Multilingual)
 - Audio-only
- Network architecture to solve modality disparity
 - CNN-Transformer
 - Fixed-size shared memory module
 - Bimodal input with length shrinking for audio
- Techniques to better pre-train and better fine-tune
 - Contrastive prediction
 - Masked LM
 - Quantization of audio representation
 - Knowledge distillation
 - Progressive pre-training

Basics

- NMT, Transformer encoder decoder.
- Pre-training paradigm for NLP
- Monolingual Pre-training for NMT
 - Encoder pre-training
 - Seq-to-seq pre-training
- Multilingual Pre-training for NMT
- Pre-training for Speech Translation

ecoder. P for NMT

for NMT ranslation

• Rong Ye, Chi Han, Qianqian Dong for help on beautification of the slides.

- Monolingual Pre-training
 - NAACL 2018]
 - Improve Neural Machine Translation by Building Word Vector [Zhang et al., AI 2020]
 - large batch size [Neishi et al, ACL 2017]

 - Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]
 - Acquiring Knowledge from Pre-trained Model to Neural Machine Translation, [Weng et al AAA] 2020]
 - Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

 - MASS: Pre-train for Sequence to Sequence Generation, [Song et al ICML 2019]
 - BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, [Lewis et al ACL 2020]

– When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation [Qi et al.,

– A bag of useful tricks for practical neural machine translation: Embedding layer initialization and

– Unsupervised pretraining for sequence to sequence learning, [Ramachandran et al., EMNLP 2017]

- Comparison between Pre-training and Large-scale Back-translation, [Huang et al., ACL 2021]

Reference

- Multilingual Pre-training
 - Cross-lingual Language Model Pre-training [Conneau et al NeurIPS 2019]
 Alternating Language Modeling for Cross-Lingual Pre-Training [Yang et al AAAI
 - Alternating Language Modeling for Cro 2020]
 - mBART: Multilingual Denoising Pre-training for Neural Machine Translation [Liu et al., TACL 2020]
 - Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information [Lin et al., EMNLP 2020]
 - CSP: Code-Switching Pre-training for Neural Machine Translation [Yang et al., EMNLP 2020]
 - Contrastive Learning for Many-to-many Multilingual Neural Machine Translation [Pan et al., ACL 2021]
 - Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]

Reference

- Speech Translation
 - wav2vec: Unsupervised Pre-training for Speech Recognition
 - wav2vec 2.0: A framework for self-supervised learning of speech representations
 - Investigating self-supervised pre-training for end-to-end speech translation
 - Self-supervised representations improve end-to-end speech translation (wav2vec + LSTM seq2seq)
 - Large-Scale Self-and Semi-Supervised Learning for Speech Translation
 - Consecutive Decoding for Speech-to-text Translation
 - "Listen, Understand and Translate": Triple Supervision Decouples End-to-end Speech-to-text Translation
 - Learning Shared Semantic Space for Speech-to-Text Translation [ACL 21]
 - Multilingual Speech Translation with Efficient Finetuning of Pretrained Models [ACL 21]
 - Fused Acoustic and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation [ICML 21]
 - End-to-end Speech Translation via Cross-modal Progressive Training [Interspeech 21]
 - Curriculum Pre-training for End-to-end Speech Translation [ACL 20]
 - End-to-End Speech Translation with Knowledge Distillation [Interspeech 19]

