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Part III: Discrete Latent Space



• Definitions & Examples


• General techniques


- Maximum likelihood estimation


- Reinforcement learning


- Gumbel-softmax


- Step-by-step Attention


• Case studies 


- Weakly supervised semantic parsing


- Unsupervised syntactic parsing

Roadmap



• Consider a probabilistic model on 


- : Discriminative (conditional)


- : Generative (joint)


- : Unknown during both training and prediction

(x, y, z)

x

y

z

Latent Variable

• Their relations depend on applications. 


• The definition here is based on the 
model , instead of the taskp(z, y |x)
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Examples
• Continuous latent variable


- Variational autoencoder (VAE) 

- A data point  is subject to some latent variable 


- Encoder: recognizing  from 


- Decoder: generating  from 

y y

z y

y z

Kingma DP, Welling M. Auto-encoding variational Bayes. In ICLR, 2014.
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Examples: VAE
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- Encoder: recognizing  from 
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• Discrete latent variable: Clustering with Gaussian mixtures


 z ∈ {A, B, C}

Examples: GMM

A

B

C



• Discrete latent variable: Syntactic parse trees

Examples: Latent Tree Induction

The  tutorial is  very  boringx

y

z

Latent variables may play a role in 
discriminative models



• Training


- Marginalization


‣ Something of 


‣     of something


‣ All sorts of approx. for 


• Inference (depending on applications)


- Target prediction: Predict  by marginalizing 


- Latent variable prediction: predict 


‣ Max a posteriori


‣ Sampling

𝔼

y z

z

General Criteria for Latent Variables

𝔼
𝔼
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Maximum Likelihood Estimation



• Observed tokens: 


• Latent states: 


• Generative procedure


- Choose  (omitted here)


- For every step :

‣ Pick 

‣ Emit 


- Suppose both parametrized by probability tables


• Example

-  : a sequence of words

-  : POS tags

y1, y2, ⋯, yT

z1, ⋯, zT

z1

t
zt ∼ p(zt |zt−1)
yt ∼ p(yt |zt)

y1, y2, ⋯, yT
z1, z2, ⋯, zT

Hidden Markov Models

y1 y2 y3

z1 z2 z3

Rabiner LR, Juang BH. An introduction to hidden Markov 
models. IEEE ASSP Magazine, 1986.
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• E-step (expectation for sufficient statistics)


- Expectation of a state, that is, 


- Expectation of two consecutive states, that is, 



- Computed by

γt(i)
Δ= 𝔼[zt = i | ⋅ ]

ξt(i, j) Δ= 𝔼[zt = i, zt+1 = j | ⋅ ]

Hidden Markov Models

γt(i) =
αt(i)βt(i)

p(Y)
ξt(i, j) =

αt(i)pθ(xt |zn = i)pθ(zt = j |zt−1 = i)βt( j)
p(Y)

where
αt(i)

Δ= p(y1:t, zt = i) βt(i)
Δ= p(yt+1:T |zt = i)

are given by dynamic programming

and



• E-step (expectation for sufficient statistics)


- Expectation of a state, that is, 


- Expectation of two consecutive states, that is, 



• M-step (MLE by soft counting)


 


 

γt(i)
Δ= 𝔼[zt = i | ⋅ ]

ξt(i, j) Δ= 𝔼[zt = i, zt+1 = j | ⋅ ]

p(zt = j |zt−1 = i) =
∑T−1

t=1 ξt(i, j)

∑T−1
t=1 γt(i)

p(x |zt = j) =
∑T

t=1 γt( j)11{Xt = x}

∑T
t=1 γt( j)

Hidden Markov Models



EM as MLE
ℓ(θt+1) = ∑

i

log p(yi; θt+1)

= ∑
i

log (∑z
p(yi, z; θt+1))

≥ ∑
i

∑
z

qt(z |yi) log
p(yi, z; θt+1)

qt(z |yi)

≥ ∑
i

∑
z

qt(z |yi) log
p(yi, z; θt)
qt(z |yi)

= ℓ(θt)
E-step: make lower bound tight

M-step: θt+1 = arg max{ ⋅ }

[Lower bound holds for any ]qt



EM as MLE
ℓ(θt+1) = ∑

i

log p(yi; θt+1)

= ∑
i

log (∑z
p(yi, z; θt+1))

≥ ∑
i

∑
z

qt(z |yi) log
p(yi, z; θt+1)

qt(z |yi)

≥ ∑
i

∑
z

qt(z |yi) log
p(yi, z; θt)
qt(z |yi)

= ℓ(θt)
E-step: make lower bound tight

M-step: θt+1 = arg max{ ⋅ }

[Lower bound holds for any ]qt



log p(Y |θ) = log (∑z
p(Y, z |θ))

• Complexity of BP = (Complexity of FP)


• EM is BP

𝒪

Back Propagation

p(y, z |x) =
1
Z

exp{∑i
θi fi}

∂
∂θi

log p(y, z |x) = 𝔼z∼p(z|x,y)[ fi] − 𝔼y,z∼p(y,z|x)[ fi]

Eisner, Jason. Inside-outside and forward-backward algorithms are just backprop (tutorial 
paper). In Proceedings of the Workshop on Structured Prediction for NLP, 2016.
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log p(Y |θ) = log (∑z
p(Y, z |θ))

• Exact marginalization (enumeration as in GMM, DP as in HMM)


• Hard-EM: Choose the single best  


- E.g., -means clustering


• Choose top-  latent variables


- Beam search


• Sampling

z

K

N

Other Treatments
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• In GMM and HMM


- We model the joint probability 


• Sometimes we have discriminative variables


- We predict  from  with  being a latent variable

p(z, y)

y x z

Latent Variables in 
Discriminative Model 

log pθ(y |x) = log (∑z
pθ(y, z |x))



log (∑z
p(z)p(Y |z, θ))

Massage

∑z
p(z) log (p(Y |z, θ))

∑z
p(z) R(Y |z, θ)

maximize

maximize

maximize

⇓ generalize



Reinforcement Learning



• In a time series, 

- We are in some states, 

- We take action  

- We have reward 

t = 1, 2,⋯, T
s1, s2, ⋯, sT

a1, a2, ⋯, aT
r1, r2, ⋯, rT

Markov Decision Process

Sutton RS, Barto AG. Introduction to Reinforcement Learning. 1998.



• In a time series, 

- We are in some states, 

- We take action  

- We have reward 


• Formally, MDP: 


  Set of states


  Set of actions


 


  Reward at state  with action 


  Discount factor in 

t = 1, 2,⋯, T
s1, s2, ⋯, sT

a1, a2, ⋯, aT
r1, r2, ⋯, rT

⟨S, A, P, R, γ⟩
S :
A :
Pa

ss′� = ℙ[St+1 = s′ �|St = s, At = a]
Ra

s : s a
γ : [0,1]

Markov Decision Process



• Consider a text generation task


 (we assume latent)


• Formally, MDP: 


  Set of states


  Set of actions


 


  Reward at state  with action 


  Discount factor in 

⟨S, A, P, R, γ⟩
S :
A :
Pa

ss′� = ℙ[St+1 = s′ �|St = s, At = a]
Ra

s : s a
γ : [0,1]

MDP in NLP

I like It

Metric

Src info
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MDP in NLP

I like it

Metric

Src info

States: Src & generated words
Usually approximated by NN



• Consider a text generation task


 (we assume latent)


• Formally, MDP: 


  Set of states


  Set of actions


 


  Reward at state  with action 


  Discount factor in 

⟨S, A, P, R, γ⟩
S :
A :
Pa

ss′� = ℙ[St+1 = s′ �|St = s, At = a]
Ra
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MDP in NLP

I like it

Metric

Src info

Actions: all words in vocabulary, 
usually very large



• Consider a text generation task
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• Formally, MDP: 
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⟨S, A, P, R, γ⟩
S :
A :
Pa

ss′� = ℙ[St+1 = s′ �|St = s, At = a]
Ra

s : s a
γ : [0,1]

I like It

Src info

Transition: deterministic

MDP in NLP
Metric



• Consider a text generation task


 (we assume latent)


• Formally, MDP: 


  Set of states


  Set of actions


 


  Reward at state  with action 


  discount factor in 

⟨S, A, P, R, γ⟩
S :
A :
Pa

ss′� = ℙ[St+1 = s′ �|St = s, At = a]
Ra

s : s a
γ : [0,1]

I like It

Src info

Reward: measure of success, 
usually very sparse

MDP in NLP
Metric



• Consider a text generation task


 (we assume latent)


• Formally, MDP: 


  Set of states


  Set of actions


 


  Reward at state  with action 


  discount factor in 

⟨S, A, P, R, γ⟩
S :
A :
Pa

ss′� = ℙ[St+1 = s′ �|St = s, At = a]
Ra

s : s a
γ : [0,1]

I like It

Src info

Discount: doesn’t 
matter too much

MDP in NLP
Metric



• Stochastic policy


- Action given state (called policy) modeled by probability


- Model 


- Action is our latent variable, called 


• Monte Carlo sampling


- Sampling until the end of episode (data point)


- No bootstrapping


• Goal is to maximize

p(action | ⋅ )

z

REINFORCE

I like It

Src info

Metric

𝔼z R(Y |z; θ)



• Stochastic policy


- Action given state (called policy) modeled by probability


- Model 


- Action is our latent variable, called 


• Monte Carlo sampling


- Sampling until the end of episode (data point)


- No bootstrapping


• Goal is to maximize

p(action | ⋅ )

z

REINFORCE

I like It

Src info

Metric

𝔼z R(Y |z; θ)

For simplicity, we here only consider the 
reward at the end of the sequence



REINFORCE: MC Policy Gradient

θ

Statisticians seem to be pessimistic creatures 
who think in terms of losses. 
Decision theorists in economics and business 
talk instead in terms of gains (utility). 

James O. Berger  (1985). Statistical Decision 
Theory and Bayesian Analysis.

𝔼
z1,⋯,zT∼pθ

[ − R(y1, ⋯, yn |z1, ⋯, zT)]minimize



𝔼
z1,⋯,zT∼pθ

[ − R(y1, ⋯, yn |z1, ⋯, zT)]minimize
θ

∇θ 𝔼
z1,⋯,zT

[ − R ]
= ∑

z1,⋯,zT

∇θ pθ(z1, ⋯, zT) ⋅ (−R)

= ∑
z1,⋯,zT

pθ(z1, ⋯, zT)∇θlog pθ(z1, ⋯, zT) ⋅ (−R)

𝔼

Suppose we only have final reward

Otherwise,  is contributing to zt Rt, ⋯, RT

REINFORCE: MC Policy Gradient



REINFORCE vs Supervised
• Sample a few sequences of actions


• Pretend that they are groundtrueh


• But reweigh it by (minus) reward

I like It

Src info

Metric

−𝔼
z
[R ⋅ ∇θlog pθ(z)]

Sample actions

Reweigh by reward



High Variance of REINFORCE

Baseline


• Mean


• Per-data mean


• 


- Critic, which can be learned by 

̂V(s)

(R − V(s))2

−𝔼
z
[R ⋅ ∇θlog pθ(z)]

(R − B)



RL vs MLE

Guu K, Pasupat P, Liu EZ, Liang P. From language to programs: Bridging 
reinforcement learning and maximum marginal likelihood. In ACL, 2017.



log (∑z
p(z)p(Y |z, θ))

Massage

𝔼
z∼pθ(z)

R(Y(z))

maximize

maximize
⇓ generalize

𝔼
ϵ∈p(ϵ)

J(Y( zθ(ϵ) ))

∑z
p(z) R(Y(z))

maximize

reparametrize⇓

𝔼



Gumbel-softmax



• If        


• And if    is a differentiable function w.r.t 


• Then life would be much easier

z ∼ pθ(z) ⟺ ϵ ∼ p(ϵ), z = fθ(ϵ)

f θ

Reparametrization Trick



• If        


• And if    is a differentiable function w.r.t 


• Then life would be much easier


• Gaussian distribution

z ∼ pθ(z) ⟺ ϵ ∼ p(ϵ), z = fθ(ϵ)

f θ

Reparametrization Trick
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• If        


• And if    is a differentiable function w.r.t 


• Then life would be much easier


• Gaussian distribution


• This doesn’t happen in the discrete case

z ∼ pθ(z) ⟺ ϵ ∼ p(ϵ), z = fθ(ϵ)

f θ

Reparametrization Trick

z ∼ 𝒩(μ, σ) ⟺ ϵ ∼ 𝒩(0,1), z = fμ,σ(ϵ) = μ + σ ⋅ ϵ

Kingma DP, Welling M. Auto-encoding variational Bayes. 
In ICLR, 2014.



Continuous vs Discrete

z ∼ 𝒩(μ, σ) ⟺ ϵ ∼ 𝒩(0,1), z = fμ,σ(ϵ) = μ + σ ⋅ ϵ
• Closer look at continuous reparametrization


• Discrete  Discrete⟶ • Continuous   Discrete⟶

Infeasible in general  =CDF  not differentiablef −1



Reparametrization is still feasible
• Gumbel-max

z ∼ one_hot[Cat(π1, π2, ⋯, πn)]

z = one_hot[ arg max
i∈{1,⋯,n}

{gi + log πi} ]
⇕

gi ∼ Gumbel(0,1) ⇕ g = − log(−log(u)), u ∼ U(0,1)

Gumbel EJ. Statistical theory of extreme values and some practical 
applications: a series of lectures. US Government Printing Office; 1948.



Reparametrization is still feasible
• Gumbel-max


• Gumbel-max itself doesn't help much


• But we can relax

gi ∼ Gumbel(0,1) ⇕ g = − log(−log(u)), u ∼ U(0,1)

z ∼ one_hot[Cat(π1, π2, ⋯, πn)]

z = one_hot[ arg max
i∈{1,⋯,n}

{gi + log πi} ]
⇕



Gumbel-Softmax

z = one_hot[ arg max
i∈{1,⋯,n}

{gi + log πi} ]

g = − log(−log(u)), u ∼ U(0,1)

z̃ = softmax
i∈{1,⋯,n}

{(gi + log πi)/τ}

Jang E, Gu S, Poole B. Categorical reparameterization with 
gumbel-softmax. ICLR, 2017.



Gumbel-Softmax

z̃ = softmax
i∈{1,⋯,n}

{gi + log πi}

z = one_hot[ arg max
i∈{1,⋯,n}

{gi + log πi} ]

• Interpolation between one-hot sample and uniform

• Interpolation considers distribution info



Gumbel-Softmax in NN

• Straight-through Gumbel-softmax 

- Forward prop: Sample one action 


- Backward prop: Relax by 


• Gumbel-softmax 

- Both forward/backprop relaxed by 

z̃

z̃

z = one_hot[ arg max
i∈{1,⋯,n}

{gi + log πi} ]
z̃ = softmax

i∈{1,⋯,n}
{gi + log πi}



Exponential Search Space

…
• Single discrete variable is not too bad

• But, space ∝ exp( step )



• Gumbel-softmax straight-through (ST)

- Forward: sample one action

- Backward: Relax by Gumbel-softmax

Exponential Search Space
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- Backward: Relax by Gumbel-softmax

Exponential Search Space



• Gumbel softmax (non-ST)

- Forward: Relax

- Backward: Relax

Discrete actions represented by 
real-valued vector

Exponential Search Space



• Gumbel softmax (non-ST)

- Forward: Relax

- Backward: Relax

Discrete actions represented by 
real-valued vector

Exponential Search Space



Gumbel vs. RL

• RL: unbiased, high variance 


- Works with any reward (theoretically)


• Gumbel: biased, low variance (still involves sampling)


- Works with differentiable loss

Provable Mostly empirical



Gumbel vs. RL

• RL: unbiased, high variance 


- Works with any reward (theoretically)


• Gumbel: biased, low variance (still involves sampling)


- Works with differentiable loss


• We may relax more

Provable Mostly empirical



log (∑z
p(z)p(Y |z, θ))

Massage

𝔼
z∼pθ(z)

R(Y(z))

maximize

maximize
⇓ generalize

𝔼
ϵ∈p(ϵ)

J(Y( zθ(ϵ) ))maximize

⇓reparametrize

relax
∇



log (∑z
p(z)p(Y |z, θ))

Massage

𝔼
z∼pθ(z)

R(Y(z))

maximize

maximize
⇓ generalize

𝔼
ϵ∈p(ϵ)

J(Y( zθ(ϵ) ))maximize

⇓reparametrize

maximize J(Y(𝔼z∼pθ(z)[z]))

relax
∇



Step-by-step Attention



• Your current querying state 


•   discrete actions


- Each could be represented as a continuous vector  


• Attention mechanism

q

z ∈ {1,⋯, n} : n

zi

Attention

Unnormalized measure

Attention probability

α̃i = exp{s(q, zi)}

αi =
α̃i

∑j α̃j

c = ∑i
αiziAttention content

Bahdanau D, Cho K, Bengio Y. Neural machine translation by 
jointly learning to align and translate. In ICLR, 2015



α(1) α(2)

Step-by-step Attention



α(1) α(2)

Step-by-step Attention



Attention vs Gumbel softmax
• Both relaxing hard action with soft probability 

- Attention: Directly using predicted probability


- Gumbel: Using Gumbel-softmax distribution 


‣ Interpolation between one-hot sample and uniform


‣ during which predicted probability is considered



Pros & Cons of Attention
• Pros


- Easy to use and understand


- No sampling is involved
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 Attention: in 
the convex hull

• Pros


- Easy to use and understand


- No sampling is involved


• Cons


- Landed in no-man’s land (mode avg)



Pros & Cons of Attention
• Pros


- Easy to use and understand


- No sampling is involved


• Cons


- Landed in no-man’s land (mode avg)


‣ If you don’t care about the actual action,


 It’s fine 😇


 - E.g., attentions in Transformer are all soft

 Attention: in 
the convex hull



Pros & Cons of Attention

This is not too wrong. 

“Meaning is use” —Wittgenstein


In machine learning, 

how you train is how you predict

• Pros


- Easy to use and understand


- No sampling is involved


• Cons


- Landed in no-man’s land (mode avg)


‣ If you don’t care about the actual action,


 It’s fine 😇

 Attention: in 
the convex hull



Pros & Cons of Attention
• Pros


- Easy to use and understand


- No sampling is involved


• Cons


- Landed in no-man’s land (mode avg)


‣ If you don’t care about the actual action,


 It’s fine 😇


‣ If you do care about the actual action,


 Discrepancy between training and prediction

 Attention: in 
the convex hull

zi



More Treatments of the Simplex 

• Argmax


• Choose the largest element of 


• Result in one-hot  (assuming no ties)

s

α

α = argmaxα∈Δ sTα

(1,0,0)

(0,1,0) (0,0,1)



More Treatments of the Simplex 

• Softmax


• Always dense

α =
exp{s}

∑i exp{si}

= argmaxα∈Δ s⊤α + ℋ(α)
(0,0,1)



More Treatments of the Simplex 

• Sparsemax


• Denser than argmax


• Sparser than softmax

α = argmaxα∈Δ s⊤α −
1
2

∥α∥2

(0,0,1)

Martins, A. and Astudillo, R., June. From softmax to sparsemax: A 
sparse model of attention and multi-label classification. In ICML, 2016.



Extending Simplex to Polytope 

Niculae, V., Martins, A.F., Blondel, M. and Cardie, C. SparseMAP: 
Differentiable sparse structured inference. In ICML, 2018.

• Structured prediction


- A set of latent variables 


- Log-linear model on the set of (latent) variables



log (∑z
p(z)p(Y |z, θ))

Massage

𝔼
z∼pθ(z)

R(Y(z))

maximize

maximize
⇓ generalize

𝔼
ϵ∈p(ϵ)

J(Y( zθ(ϵ) ))maximize

⇓reparametrize

maximize J(Y(𝔼z∼pθ(z)[z]))

relax∇



Combining Mode Avg/Sampling
• First, do mode averaging


- Exploring all modes simultaneously 


- Having a general sense of the search space


• Then, do mode sampling


- To learn more accurate actions
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Combining Mode Avg/Sampling
• First, do mode averaging


- Exploring all modes simultaneously 
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Application: Semantic Parsing



Semantic Parsing

• Fully supervised setting:


- Input natural language, and 


- Output logical forms


• Both are known during training

Dong, Li, and Mirella Lapata. Language to logical form with 
neural attention. In ACL, 2016.



Weakly Supervised setting
Unknown during training 
(Discrete latent space)

Company Req Loc $
A
B
C

Supervision Signal: Result is Correct/Incorrect?



RL Approach

Liang, C., Berant, J., Le, Q., Forbus, K.D. and Lao, N.. Neural 
symbolic machines: Learning semantic parsers on freebase 
with weak supervision. In ACL, 2017.

Predefined primitive  
operators

Seq2Seq-like model

RL training 
(BS better than sampling)



MLE

Guu, K., Pasupat, P., Liu, E.Z. and Liang, P. From language to 
programs: Bridging reinforcement learning and maximum 
marginal likelihood. In ACL, 2017.

• Show close relationship between RL and MLE



Attention on Execution Results

Neelakantan, A., Le, Q.V. and Sutskever, I. Neural programmer: 
Inducing latent programs with gradient descent. In ICLR, 2016.

Primitive operator + Step-by-step attn on results



Attention as Execution Itself

Yin, P., Lu, Z., Li, H. and Kao, B., 2015. Neural enquirer: 
Learning to query tables with natural language. In IJCAI, 2016.



Neural Executor

• Attention-based column selection


• Distributed representation for row selection


- Not subject to primitive operators


- Not fully explainable either

Yin, P., Lu, Z., Li, H. and Kao, B., 2015. Neural enquirer: 
Learning to query tables with natural language. In IJCAI, 2016.



Attention as Execution Itself

Yin, P., Lu, Z., Li, H. and Kao, B., 2015. Neural enquirer: 
Learning to query tables with natural language. In IJCAI, 2016.

 Step-by-step attention does learn meaningful things



Attention + RL

Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin. Coupling distributed and 
symbolic execution for natural language queries. In ICML, 2017.



Attention-based initialization is important

Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin. Coupling distributed and 
symbolic execution for natural language queries. In ICML, 2017.



Attention-based initialization is important

Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin. Coupling distributed and 
symbolic execution for natural language queries. In ICML, 2017.



Application: Syntactic Parsing 
(Unsupervised)



Recursive Autoencoder

Induce tree structures by minimizing reconstruction on an AE

Socher, Richard, Jeffrey Pennington, Eric H. Huang, 
Andrew Y. Ng, and Christopher D. Manning. Semi-
supervised recursive autoencoders for predicting sentiment 
distributions. In EMNLP, 2011.



Recursive Neural Network

Sheng, Socher, et al. Improved semantic representations from tree-structured 
long short-term memory networks. In ACL, 2015.

Socher, R., et al. Recursive deep models for semantic compositionality over a 
sentiment treebank. In EMNLP, 2013.

Socher R., et al. Semantic compositionality through recursive matrix-vector 
spaces. In EMNLP, 2012.

• Parsing by auto-encoding never worked


• Standard RecursiveNN is based on external parse trees


I.e., Tree structures are constant



SPINN

• Shift-reduce parser jointly trained with downstream task 


• Supervision provided by Standford Parser

Bowman, S.R., Gauthier, J., Rastogi, A., Gupta, R., 
Manning, C.D. and Potts, C., 2016. A fast unified model for 
parsing and sentence understanding. In ACL, 2016.

Stack-augmented Parser-Interpreter Neural Network



RL-SPINN

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E. and Ling, W.. 
Learning to compose words into sentences with reinforcement 
learning. In ICLR, 2017.

• Still shift-reduce parser


• Semi-supervised or unsupervised


• Trained by RL



Chart-style Parser

Maillard, J., Clark, S. and Yogatama, D. Jointly learning sentence 
embeddings and syntax with unsupervised tree-LSTMs. NLE, 2019.

• Implicitly considering all 
possible trees


• Not exact marginalization


• Step-by-step fusion/attention



Pyramid

Choi, J., Yoo, K.M. and Lee, S.G. Learning to compose task-specific 
tree structures. In AAAI, 2018.

• ST-Gumbel



Main issues with these models

Williams, A., Drozdov, A. and Bowman, S.R. Do latent tree learning 
models identify meaningful structure in sentences? TACL, 2018.


Shi, H., Zhou, H., Chen, J. and Li, L., 2018. On tree-based neural 
sentence modeling. In EMNLP, 2018.

[William et al., TACL’18]


• Trees are not consistent across random init.


• Do not resemble real trees


[Shi et al., EMNLP’18]


• All trees are similar to downstream performance


• Balanced trees are slightly better



Havrylov, S., Kruszewski, G. and Joulin, A., 2019. Cooperative 
learning of disjoint syntax and semantics. In NAACL-HLT, 2019.

Proximal Policy Optimization

Exact gradient, easy to learn

RL, difficult to learn

• Train the policy  steps


• Clip gradient


K

ϕ

θ



Kim, Y., Dyer, C. and Rush, A.M., 2019. Compound Probabilistic 
Context-Free Grammars for Grammar Induction. In ACL, 2019.

Compound PCFG
• Over-parametrize PCFG into a Gaussian continuous space


- Shown to be easier to train and more linguistically plausible

Exact by inside allVAE



PRPN

Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language 
modeling by jointly learning syntax and lexicon. In ICLR, 2018.

Parsing-Reading-Predict Networks

• Language modeling is important


• Structured attention, based on “syntactic distance”



PRPN

Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language 
modeling by jointly learning syntax and lexicon. In ICLR, 2018.

Parsing-Reading-Predict Networks

• Syntactic distance  (learned in an unsupervised way)d

 [0,1]∈Difference of :d

Multiplicative 

accumulation

Reweigh self-attn.



PRPN

Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language 
modeling by jointly learning syntax and lexicon. In ICLR, 2018.

Parsing-Reading-Predict Networks

• Prediction

(w1, w2) | (w3w4w5)
Intuitive way/In paper
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Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language 
modeling by jointly learning syntax and lexicon. In ICLR, 2018.

Parsing-Reading-Predict Networks

• Prediction

(w1, w2) | (w3w4w5)
Intuitive way/In paper

(w1, w2) | (w3 | (w4w5))
In Appendix/Code

Heuristics

PRPN



Combining Both Worlds

Bowen Li, Lili Mou, Frank Keller. An imitation learning approach to 
unsupervised parsing. In ACL, 2019.

• Step1: Step-by-step learning from PRPN


• Step2: Policy improvement by ST-Gumbel



Results

Bowen Li, Lili Mou, Frank Keller. An imitation learning approach to 
unsupervised parsing. In ACL, 2019.

• Our results show


- Language modeling is good, but semantic oriented tasks also help


- ST-Gumbel works if meaningful initialized



• Case studies 


- Weakly supervised semantic parsing


- Unsupervised syntactic parsing

Summary
log (∑z

p(z)p(Y |z, θ))
𝔼

z∼pθ(z)
R(Y(z))

maximize

maximize

𝔼
ϵ∈p(ϵ)

J(Y( zθ(ϵ) ))maximize

maximize J(Y(𝔼z∼pθ(z)[z]))

RL

MLE

Gumbel 
softmax

Attention
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