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Part lll: Discrete Latent Space
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Roadmap

e Definitions & Examples
e General technigues
- Maximum likelihood estimation
- Reinforcement learning
- Gumbel-softmax
- Step-by-step Attention
e Case studies
- Weakly supervised semantic parsing

- Unsupervised syntactic parsing



Latent Variable

» Consider a probabilistic model on (x, y, 7)
- Xx: Discriminative (conditional)
- y: Generative (joint)

- Z: Unknown during both training and prediction



Latent Variable

» Consider a probabilistic model on (x, y, 7)
- Xx: Discriminative (conditional)
- y: Generative (joint)

- Z: Unknown during both training and prediction

* Their relations depend on applications.

* The definition here is based on the
model p(z, y | x), instead of the task



Examples

e Continuous latent variable

- Variational autoencoder (VAE)

- A data point y is subject to some latent variable y

Encoder Decoder

Kingma DP, Welling M. Auto-encoding variational Bayes. In ICLR, 2014.



Examples: VAE

e Continuous latent variable

- Variational autoencoder (VAE)
- A data point y is subject to some latent variable y
- Encoder: recognizing z from y

- Decoder: generating y from z

Encoder Decoder

Kingma DP, Welling M. Auto-encoding variational Bayes. In ICLR, 2014.



Examples: GMM

* Discrete latent variable: Clustering with Gaussian mixtures
z€ {A,B, C}
B

C

\
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Examples: Latent Tree Induction

* Discrete latent variable: Syntactic parse trees

(&) @
: /\
@ The tutorial 1s very boring

Latent variables may play a role in
discriminative models




General Criteria for Latent Variables

e Training

- Marginalization

» Something of |-

> [= of something

» All sorts of approx. for It




General Criteria for Latent Variables

e Training

- Marginalization

» Something of |-

> [= of something

» All sorts of approx. for It

e Inference (depending on applications)
- Target prediction: Predict y by marginalizing Z
- Latent variable prediction: predict 7

> Max a posteriori

» Sampling



Maximum Likelihood Estimation
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Hidden Markov Models

e Observed tokens: yi, ¥, ***, Y

o Latent states: z¢, **+, 27 a @ @
 Generative procedure
- Choose z; (omitted here) @ @ @
- For every step .
> Pick z, ~ p(z,|z,_1)

> Emity, ~ p(y,|2,)
- Suppose both parametrized by probability tables

Rabiner LR, Juang BH. An introduction to hidden Markov
models. [EEE ASSP Magazine, 1986.



Hidden Markov Models

Observed tokens: yi, y,, **+, V7

Latent states: z;, -, 27 a @ @
Generative procedure
- Choose z; (omitted here) @ @ @
- For every step .

> Pick z, ~ p(z,|z,_1)

> Emity, ~ p(y;|2,)

- Suppose both parametrized by probability tables

Example
- ¥1. Y9, ***, Y7 . @ sequence of words
- 2152y, =+, 27 POS tags

Rabiner LR, Juang BH. An introduction to hidden Markov
models. [EEE ASSP Magazine, 1986.



G —()—(»)
Hidden Markov Models

e E-step (expectation for sufficient statistics)

- Expectation of a state, that is, 7,(7) £ [z, =1 -]
- Expectation of two consecutive states, that is,
.o A . :
i, ) =Elzy=1,z,, =]l 1
- Computed by
a ()P i) o (Dpe(x |z, = Dpe(z, = ] 2,21 = DPJ)

yz(l) — p(Y) é(la]) — p(Y)

where and

a(i) 2 pyipz =0 B EpW ]z =i)

are given by dynamic programming



(2)~(z)
Hidden Markov Models

e E-step (expectation for sufficient statistics)

- Expectation of a state, that is, 7,(7) £ [z, =1 -]

- Expectation of two consecutive states, that is,
Lo A : .
i, ) =Elzy=1,z,.,=]| 1
e M-step (MLE by soft counting)

- > e ))
ZIT—_I }/t(l)
> (DX, = x)

ZtT=1 }/l‘(])

p(Zt :j‘zt—l =) =

p(x‘ztzj) —



EM as MLE

f(aﬂ-l) — 2 logp(yza 9t+1)

; S ( ZZ Ly ’“)) [Lower bound holds for any ¢}

p(¥;2:6,41)
> gz |y;) log
; ; t q{z|y;)

p(yia Zs 0 )
> ) D alzly) log t
iz q.z|y;) E-step: make lower bound tight

M-step: 0, , = arg max{ - }

= 2(0)




EM as MLE

f(aﬂ-l) — Z logp(yza 9t+1)

; S ( ZZ Ly ’+1)> [Lower bound holds for any ¢}

p(¥;2:6,41)
> gz |y;) log
Z ; t q{z|y;)

p(yia Zs 0 )
> ) D alzly) log t
iz q.z|y;) E-step: make lower bound tight

M-step: 0z+1 = arg max{ - |

= 2(0)




Back Propagation
log p(Y|0) = log (Zzp(Y,z\m)

e Complexity of BP = O(Complexity of FP)



Back Propagation
log p(Y|0) = log (Zzp(Y,z\m)

e Complexity of BP = O(Complexity of FP)
e EMis BP

|
p(y,z|x) = ~ exp{ Zi‘gifi}

0
E log p(y, z]x) = _Z~p(zlx,y)[fi] - _y,ZNP(y,ZIx)[fi]

Eisner, Jason. Inside-outside and forward-backward algorithms are just backprop (tutorial
paper). In Proceedings of the Workshop on Structured Prediction for NLP, 2016.



Other Treatments
, —_ 0))

 Exact marginalization (enumeration as in GMM, DP as in HMM)




Other Treatments
> .| 0))

Exact marginalization (enumeration as in GMM, DP as in HMM)

Hard-EM: Choose the single best 7
- E.g., K-means clustering

Choose top-/N latent variables

- Beam search

Sampling



Latent Variables In
Discriminative Model
e |In GMM and HMM

- We model the joint probability p(z, y)

e Sometimes we have discriminative variables

- We predict y from x with z being a latent variable

log pe(y | x) = log (ZZ pa(y,Z\X)>



Massage
maximize  log (|3 pp(¥ |z 0))

maximize Zzp(z) log (p(Y\ Z, 0))

»U« generalize

maximize ZZ p(2) R(Y|z,0)



Reinforcement Learning
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Markov Decision Process

e Inatimeseries,t =1, 2,---, T
- We are in some states, §, 5,5, ***, S1
- We take action ay, a,, ++-, dr
- We have reward ry, 15, ***, I'm

Sutton RS, Barto AG. Introduction to Reinforcement Learning. 1998.



Markov Decision Process

e Inatimeseries,t =1, 2,---, T
- We are in some states, §, 5,5, ***, S1
- We take action ay, a,, ++-, dr
- We have reward ry, 75, ***, I'r
e Formally, MDP: (S, A, P, R, y)
S : Set of states
A : Set of actions
P, =P[S =55 =5,A,=da]
R : Reward at state s with action a

y : Discount factor in [0,1]



MDP in NLP

 Consider a text generation task

(we assume latent)

e Formally, MDP: (S, A, P,R, ) [ Src info ]
S : Set of states

A : Set of actions
P, =P[S, =55 =s,A,=da]
R : Reward at state s with action a

v : Discount factor in [0,1]



MDP in NLP

 Consider a text generation task

(we assume latent)

e Formally, MDP: (S, A, P,R, ) [ Src info j
S : Set of states

States: Src & generated words
Usually approximated by NN




MDP in NLP

 Consider a text generation task

(we assume latent)

e Formally, MDP: (S, A, P,R, ) [ Src info j

A : Set of actions

Actions: all words in vocabulary, g
usually very large : Cl?ﬂ ll
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MDP in NLP

 Consider a text generation task

(we assume latent)

e Formally, MDP: (S, A, P,R, ) [ Src info j

P, =P[S, =55 =s,A,=da]

Transition: deterministic




MDP in NLP

 Consider a text generation task

(we assume latent)

e Formally, MDP: (S, A, P,R, ) [ Src info j

R : Reward at state s with action a

Reward: measure of success,
usually very sparse

L



MDP in NLP

 Consider a text generation task

(we assume latent)

e Formally, MDP: (S, A, P,R, ) [ Src info j

Discount: doesn't
matter too much

y : discount factor in [0,1]



REINFORCE

e Stochastic policy

- Action given state (called policy) modeled by probability
- Model p(action| - )

- Action is our latent variable, called

<Metric>

[ Src info j




REINFORCE

e Stochastic policy

- Action given state (called policy) modeled by probability
- Model p(action| - )

- Action is our latent variable, called

* Monte Carlo sampling

- Sampling until the end of episode (data point)
<Metnc>
- No bootstrapping

e (Goal is to maximize

= R(Y|2:0)

For simplicity, we here only consider the -
reward at the end of the sequence [ Src info j




REINFORCE: MC Policy Gradient

minimize — [ — R(yl, "',yn ‘ Zla "t ZT)]

0 Zl?'"’ZTNpﬁ

Statisticians seem to be pessimistic creatures
who think in terms of losses.

Decision theorists in economics and business
talk instead in terms of gains (utility).

James O. Berger (1985). Statistical Decision
Theory and Bayesian Analysis.



REINFORCE: MC Policy Gradient

minimize — [ _R(yl, "',yn‘219 ”.9ZT)]
0 215" Z7~Py

Suppose we only have final reward
Otherwise, z, is contributing to R,, -+, Ry

Vo E |-R]

,oo.,ZT

<1
Z Vﬂpﬂ(zla "t ZT) ) (_R)
21502

T

Z pH(Z19 e, ZT) Vglogpa(zl, T ZT) . (_R)

SENAEYY)



REINFORCE vs Supervised

e Sample a few sequences of actions

* Pretend that they are groundtrueh

e But reweigh it by (minus) reward z_ [R - Vglogp Q(Z)]

<Metrlc>

Reweigh by reward - |

Sample actions
[ Src info J




High Variance of REINFORCE

—E[R | Vylog py(@)]
<
(R — B)
Baseline
e Mean

e Per-data mean
e V(s)
- Critic, which can be learned by (R — V(S))2



RL vs MLE

Method Approximation of F |-] Exploration strategy =~ Gradient weight ¢(z)
REINFORCE Monte Carlo integration independent sampling po(z | x)
BS-MML numerical integration beam search po(z | x, R(z) # 0)
RANDOMER numerical integration randomized beam search q5(2)

Guu K, Pasupat P, Liu EZ, Liang P. From language to programs: Bridging
reinforcement learning and maximum marginal likelihood. In ACL, 2017.



Massage
maximize  log (|3 pp(¥]z. 0))

maximize ZZ_ é9(2) | R(Y(2))

= R(Y(2))

ZNPH(Z) :
‘U‘ reparametrize

maximize = J(Y( zg(€) ))
eEp(e)




Gumbel-softmax
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Reparametrization Trick

o If 2~ py(z) = €~ ple), 2= fyle)
e Andif f is a differentiable function w.r.t @

e Then life would be much easier



Reparametrization Trick

Iif 2~ pe(z) <= €~ ple), z=Jyle)
And if f is a differentiable function w.r.t @

Then life would be much easier

Gaussian distribution

2~ N(u,0) = ¢~ N(0,1), z=ﬁ4,6(€) = U




Reparametrization Trick

o If 2~ py(z) = €~ ple), 2= fyle)
e Andif f is a differentiable function w.r.t @

e Then life would be much easier

e (Gaussian distribution

2~ N(u,0) = ¢~ N(0,1), z=ﬁ4,6(€) = U

 This doesn’t happen in the discrete case

Kingma DP, Welling M. Auto-encoding variational Bayes.
In ICLR, 2014.




Continuous vs Discrete

 Closer look at continuous reparametrization

Al
"

L

z~N,0) = e~N0,1),z=f,(e)=p+o-¢€

e Discrete — Discrete

™~
/
I m
0 1

Infeasible in general

e Continuous —> Discrete

/ ////

f —CDF~! not differentiable



Reparametrization is still feasible

e (Gumbel-max

z ~ one_hot|Cat(x, w5, **+, )]

z = one_hot| arg max{g; + logn}
- 1e{l,---,n}

gi ~ Gumbel(0,1) & g = — log(~log(w)),u ~ U®,1)

Gumbel EJ. Statistical theory of extreme values and some practical
applications: a series of lectures. US Government Printing Office; 1948.



Reparametrization is still feasible

e (Gumbel-max

z ~ one_hot|Cat(x, w5, **+, )]

z = one_hot| arg max{g; + logn}
- 1e{l,---,n}

gi ~ Gumbel(0,1) & g = — log(~log(w)),u ~ U®,1)

e Gumbel-max itself doesn't help much

e But we can relax



Gumbel-Softmax

g = —log(—log(u)),u ~ U(0,1)

~~/

z = softmax{(g; + log )/}
E i€{1,,n)

Jang E, Gu S, Poole B. Categorical reparameterization with
gumbel-softmax. ICLR, 2017.



Gumbel-Softmax

z = one_hot| arg max{ g+ log 71'}
- 1eil,---,n}

7 = softmax{g; + log r;}
i€ {1, )

L T
NN

category

o
N—

N

le  expectation

| O—
samp

e |nterpolation between one-hot sample and uniform
e |nterpolation considers distribution info




Gumbel-Softmax in NN

7= one_hot arg max{ g+ logﬂ}
- el ,n}

7 = softmax{g. + log r;}
i€ {1,n)

e Straight-through Gumbel-softmax

- Forward prop: Sample one action

- Backward prop: Relax by 7

e Gumbel-softmax

- Both forward/backprop relaxed by 7



Exponential Search Space

N

o<§
O<§

e Single discrete variable is not too bad
e But, space « exp( step )




Exponential Search Space

e Gumbel-softmax straight-through (ST)
- Forward: sample one action
- Backward: Relax by Gumbel-softmax



Exponential Search Space

O
O
O

©<§<
O<§

e Gumbel-softmax straight-through (ST)

- Forward: Sample one action
- Backward: Relax by Gumbel-softmax




Exponential Search Space

Discrete actions represented by
real-valued vector

O O

o

O

O

e Gumbel softmax (non-ST)
- Forward: Relax
- Backward: Relax



Exponential Search Space

Discrete actions represented by
real-valued vector

O O

! )

O

O

e Gumbel softmax (non-ST)
- Forward: Relax
- Backward: Relax



Gumbel vs. RL

Provable Mostly empirical

* RL: unbiased, high variance
- Works with any reward (theoretically)
e Gumbel: biased, low variance (still involves sampling)

- Works with differentiable loss



Gumbel vs. RL

Provable Mostly empirical
RL: unbiased, high variance
- Works with any reward (theoretically)
Gumbel: biased, low variance (still involves sampling)

- Works with differentiable loss

We may relax more



Massage
maximize log ( ZZP(Z)P(Y\ Z, 9))

maximize = R(Y(2))
ZNPG(Z) m

reparametrizeu

maximize — J ( Y (
eep(e) “relax

= | Gios o 2 RGN R S T M N I A AN AN
R



Massage

maximize log (

maximize

maximize

maximize




Step-by-step Attention
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Attention

e Your current querying state g
e z€ {1,---,n} : n discrete actions

- Each could be represented as a continuous vector Z;

e Attention mechanism

"~/

Unnormalized measure (X; = CXP { \) (q ) Zi) }

of

Attention probability ai ~

j )

Bahdanau D, Cho K, Bengio Y. Neural machine translation by
jointly learning to align and translate. In ICLR, 2015

Attention content C



Step-by-step Attention




Step-by-step Attention

O O




Attention vs Gumbel softmax

 Both relaxing hard action with soft probability
- Attention: Directly using predicted probability
- Gumbel: Using Gumbel-softmax distribution
> Interpolation between one-hot sample and uniform

> during which predicted probability is considered



Pros & Cons of Attention

* Pros
- Easy to use and understand

- No sampling is involved



Pros & Cons of Attention

e Pros

Attention: in
the convex hull

*

- Easy to use and understand

- No sampling is involved

e Cons

- Landed in no-man’s land (mode avg)



Pros & Cons of Attention

e Pros

Attention: in
the convex hull

*

- Easy to use and understand

- No sampling is involved

e Cons
- Landed in no-man’s land (mode avg)
> If you don’t care about the actual action,

It's fine ©

- E.g., attentions in Transformer are all soft



Pros & Cons of Attention

e Pros

Attention: in
the convex hull

*

- Easy to use and understand
- No sampling is involved
e Cons
- Landed in no-man’s land (mode avg)
> If you don’t care about the actual action,
It's fine ©

This is not too wrong.
“Meaning is use” —Wittgenstein

In machine learning,
how you train is how you predict

R




Pros & Cons of Attention

e Pros

Attention: in
the convex hull

*

- Easy to use and understand

- No sampling is involved

e Cons
- Landed in no-man’s land (mode avg)
> If you don’t care about the actual action,
It's fine ©
> If you do care about the actual action,

Discrepancy between training and prediction



More Treatments of the Simplex

(1,0,0)
 Argmax

@ = argmax ., s’ a

e Choose the largest element of §

: _ _ (0,1,0) (0,0,1)
e Result in one-hot @ (assuming no ties)



More Treatments of the Simplex

e Softmax

_ expis}
v Ziexp{si} *

= argmax s'a + ()

(0,0,1)

 Always dense



More Treatments of the Simplex

e Sparsemax

@ = argmax, ., S ' a — 5”“\\2

(0,0,1)
 Denser than argmax

e Sparser than softmax

Martins, A. and Astudillo, R., June. From softmax to sparsemax: A
sparse model of attention and multi-label classification. In ICML, 2016.



Extending Simplex to Polytope

*

/\
argmax MAP i
(1.9.9) SparseMAP
. @ *
Marginal /\
sparsemax / @ * S o
(.6, .4,0) / softmax AEINE !
(.5, .3,.2) X
AN M

e Structured prediction
- A set of latent variables

- Log-linear model on the set of (latent) variables

Niculae, V., Martins, A.F., Blondel, M. and Cardie, C. SparseMAP:
Differentiable sparse structured inference. In ICML, 2018.



Massage
maximize log ( ZZP(Z)P(Y\ Z, 9))

maximize = R(Y(2))
Z2~py(2)

maximize = J(Y( z9(€) ))
eep(e)

maximize  J(Y(E_., .[z])



Combining Mode Avg/Sampling

e First, do mode averaging
- Exploring all modes simultaneously

- Having a general sense of the search space

Mode 4 v€f0tdrf\<0l

AN




Combining Mode Avg/Sampling




Combining Mode Avg/Sampling

400 NN




Combining Mode Avg/Sampling




Combining Mode Avg/Sampling




Combining Mode Avg/Sampling




Application: Semantic Parsing
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Semantic Parsing

Attention Layer
what microsoft jobs . . anszs:er(J ’(Corg?a,
do notrequirca —®Ad| — ¥ AAI—> ny(J, microsoft),}
bscs? < < ob(J),not((req_de
e g(,'bscs)))))
Input Sequence Sequence/Tree  Logical
Utterance Encoder Decoder Form

* Fully supervised setting:
- Input natural language, and
- Output logical forms

 Both are known during training

Dong, Li, and Mirella Lapata. Language to logical form with
neural attention. In ACL, 2016.



Weakly Supervised setting

Unknown during training

Attontion Layer ‘ (Dlscre latent space)
what microsoft jobs C C y
do notrequirea —®AAd| — P AI—> ny(J, 2N Company Req
2 2 ob(1),p6t(lxe
bscs? o
Input Sequence Sequence/Tree  Logical
Utterance Encoder Decoder Form

Supervision Signal: Result is Correct/Incorrect?



RL Approach

(Hoprp)= {ez2le1 €r,(e1,p,e2) € K}

. c ey (ArgMaxrp) = {eilex1 € ,Je2 € £ : (e1,p,e2) € K, Ve : (e1,p,e) € K, ez > e}
Predefined primitive (ArgMinrp) = {eile1 € r,des € £ : (e1,p,e2) € K, Ve : (e1,p,e) € K,eq < e}

operators ( Filter ry ro p ) = {e1le1 € r1,des € 72 : (€1,p, e2) € K}
Table 1: Interpreter functions. r represents a variable, p a property in Freebase. > and < are defined on numbers and dates.
Key | Variable |:> Key | Variable | > Key | Variable |:> m.NYC |
v, R1(m.USA) fﬁi;uéj ICityln ) v, R1(m.USA) :Er\fg:; R2 Population ) E:f:rl:e
Entity Resolver —J v, R2(list of US cities) —Q Vs R3(m.NYC)
= ( Hop R1 ICityIn ) Argmax R2  Population ) Return
Seq2Seqg-like model S N SN Pttt
t t f f f } 1 f f f f f f f f
Largest city in us GO ( Hop R1 ICityln ) ( Argmax R2 Population )
RL
. JEE0) = " Epy(ag.ria) [R(z, a0.1)],
RL training .
(BS better than sampling) VoI RL(0) =33 Py(aor | @) - [R(z, ag.r)—
r ao:T7

B(z)] - Vglog Py(ag.T | ),

Liang, C., Berant, J., Le, Q., Forbus, K.D. and Lao, N.. Neural

symbolic machines: Learning semantic parsers on freebase
with weak supervision. In ACL, 2017.



MLE

Method Approximation of F, |- Exploration strategy Gradient weight ¢(z)
REINFORCE Monte Carlo integration independent sampling po(z | )

BS-MML numerical integration beam search po(z | x, R(z) # 0)
RANDOMER numerical integration randomized beam search q5(2)

 Show close relationship between RL and MLE

Guu, K., Pasupat, P, Liu, E.Z. and Liang, P. From language to
programs: Bridging reinforcement learning and maximum
marginal likelihood. In ACL, 2017.



Attention on Execution Results

i Outputt=
History RNN TImeStep t Op on data weighted by softmax

h
mi‘jf Data Source
Apply

RNN top—> -,
Input at Step m:mi L | l ; I -
stept Col Selector T | Final
— : : | Output
Softmax_—  Operations | =
\ i [Outputr
“\‘ /' hop
Question RNN .  cm | [Op Selector

q t=1,2,...,T

..........................................................................

scalar_answer; = a;" (count) count; + o (difference) diff; + Z o5 (5)af? (sum) sum[4],
71=1

col

lookup _answer:[i][j] = af®(7)a;” (assign)assign[i][7],V(4,7)i = 1,2,...,M,j =1,2,...,C

Primitive operator + Step-by-step attn on results

Neelakantan, A., Le, Q.V. and Sutskever, |. Neural programmer:
Inducing latent programs with gradient descent. In ICLR, 2016.



Attention as Execution ltself

Athens (probability distribution over table entries)

Executor-5

Executor-4

Executor-3

query embedding Executor-1

corpns

query Q

Select host_city of r2

*

Memory Layer-3

Memory Layer-2

Memory Layer-1

Select year of rl1 as a

Find r2 in R with max(#_duration)

Find row sets R where year < a

Find row rl where host_city=Beijing

ENEEEE

LLLTT 1]

Which city hosted the longest Olympic Games before the Games in Beijing?

logical form Z

where year < (select year, where host_city = Beijing),
argmax(host_city, # duration)

table embedding

Yin, P, Lu, Z., Li, H. and Kao, B., 2015. Neural enquirer:
Learning to query tables with natural language. In I[JCAI, 2016.

year | host_city | # _duration | #_medals
2000 | Sydney 20 2,000
2004 Athens 35 1,500
2008 | Beijing 30 2,500
2012 London 40 2,300




Neural Executor

Soft column

selection
N ) Distributed row
~ Py annotation (t)
el il T
select :> . ENEEN
Selected
column H Bl N

o Attention-based column selection
o Distributed representation for row selection
- Not subject to primitive operators

- Not fully explainable either

Yin, P, Lu, Z., Li, H. and Kao, B., 2015. Neural enquirer:
Learning to query tables with natural language. In I[JCAI, 2016.



Attention as Execution ltself

Query: How many people watched the earliest game whose host country GDP is larger than the game in Cape Town?

1.0 (a) Execution Step 1 10 (b) Execution Step 2 10 (c) Execution Step 3 10 (d) Execution Step 4
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Step-by-step attention does learn meaningful things

Yin, P, Lu, Z., Li, H. and Kao, B., 2015. Neural enquirer:
Learning to query tables with natural language. In I[JCAI, 2016.



Attention + RL
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— Differentiable —> Non-differentiable — step supervision

Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin. Coupling distributed and
symbolic execution for natural language queries. In ICML, 2017.



Attention-based Initialization is important

(a) Symbolic RL only (b) SL Pretrain + Symbolic RL
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Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin. Coupling distributed and
symbolic execution for natural language queries. In ICML, 2017.



Attention-based Initialization is important

Query: How many people watched the earliest game whose host country GDP is larger than the game in Cape Town?
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Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin. Coupling distributed and

(a) Execution Step 1

(b) Execution Step 2
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(d) Execution Step 4
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Application: Syntactic Parsing
(Unsupervised)
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Recursive Autoencoder
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Induce tree structures by minimizing reconstruction on an AE

Socher, Richard, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. Semi-
supervised recursive autoencoders for predicting sentiment
distributions. In EMNLP, 2011.



Recursive Neural Network

Recursive Matrix-Vector Model
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e Parsing by auto-encoding never worked
e Standard RecursiveNN is based on external parse trees

l.e., Tree structures are constant

Sheng, Socher, et al. Improved semantic representations from tree-structured
long short-term memory networks. In ACL, 2015.

Socher, R., et al. Recursive deep models for semantic compositionality over a
sentiment treebank. In EMNLP, 2013.

Socher R., et al. Semantic compositionality through recursive matrix-vector
spaces. In EMNLP, 2012.



SPINN

Stack-augmented Parser-Interpreter Neural Network

t=0 t =1 t =2 t =3 t =4 t=35 t=6 t=7=T
R R the cat R
stack - - the the cat - sat - the cat
the cat the cat sat down sat down (the cat) (sat down)
x 3 \ X X X N
SHirT SuiFT \
4 £ £ £ £ £ £ output to model
the cat sat sat down f tic task
buffer cat sat R down R down Or semantic tas
sat down
down

(b) The fully unrolled SPINN for the cat sat down, with neural network layers omitted for clarity.

e Shift-reduce parser jointly trained with downstream task

e Supervision provided by Standford Parser

Bowman, S.R., Gauthier, J., Rastogi, A., Gupta, R.,
Manning, C.D. and Potts, C., 2016. A fast unified model for
parsing and sentence understanding. In ACL, 2016.



RL-SPINN
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o Still shift-reduce parser

e Semi-supervised or unsupervised

e Jrained by RL
:R(W) — IEw(a,s;WR) Z Tty

t=1

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E. and Ling, W..
Learning to compose words into sentences with reinforcement
learning. In ICLR, 2017.



Chart-style Parser

Chle>D

‘neuro linguistic programming rocks’
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e Step-by-step fusion/attention
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‘neuro’ ‘linguistic’ ‘programming’ ‘rocks’

Maillard, J., Clark, S. and Yogatama, D. Jointly learning sentence
embeddings and syntax with unsupervised tree-LSTMs. NLE, 2019.



Pyramid
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Choi, J., Yoo, K.M. and Lee, S.G. Learning to compose task-specific
tree structures. In AAA/, 2018.



Main issues with these models

[William et al., TACL’18]
e [rees are not consistent across random init.

e Do not resemble real trees

[Shi et al., EMNLP’18]

e All trees are similar to downstream performance

e Balanced trees are slightly better

Williams, A., Drozdov, A. and Bowman, S.R. Do latent tree learning
models identify meaningful structure in sentences? TACL, 2018.

Shi, H., Zhou, H., Chen, J. and Li, L., 2018. On tree-based neural
sentence modeling. In EMNLP, 2018.



Proximal Policy Optimization

e Train the policy K steps

B ro(O o ),y)] o) = 225

e Clip gradient

A

£y [max {T‘d)(t)f (f9($, t)v y) 7T<Cp(t)€ (fH(:Ev t)v y)}}

rg(t) = clip(re(t),1 —¢€,1+¢)

6 Exact gradient, easy to learn

¢ RL, difficult to learn

The tutorial is very boring

Havrylov, S., Kruszewski, G. and Joulin, A., 2019. Cooperative
learning of disjoint syntax and semantics. In NAACL-HLT, 2019.



Compound PCFG

 QOver-parametrize PCFG into a Gaussian continuous space

- Shown to be easier to train and more linguistically plausible

Kim, Y., Dyer, C. and Rush, A.M., 2019. Compound Probabilistic
Context-Free Grammars for Grammar Induction. In ACL, 2019.



PRPN

Parsing-Reading-Predict Networks

e | anguage modeling is important

e Structured attention, based on “syntactic distance”
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Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language
modeling by jointly learning syntax and lexicon. In ICLR, 2018.



PRPN

Parsing-Reading-Predict Networks

e Syntactic distance d (learned in an unsupervised way)

. hardtanh(7(d; — d;)) + 1
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Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language
modeling by jointly learning syntax and lexicon. In ICLR, 2018.



PRPN

Parsing-Reading-Predict Networks

e Prediction

Intuitive way/In paper

Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language
modeling by jointly learning syntax and lexicon. In ICLR, 2018.



PRPN

Parsing-Reading-Predict Networks

e Prediction

(Wi, wy) | (W3W4W5) (Wp W) ‘ (w3 | (Wyws))
Intuitive way/In paper In Appendix/Code

Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language
modeling by jointly learning syntax and lexicon. In ICLR, 2018.



PRPN

Parsing-Reading-Predict Networks

e Prediction

(Wyws))
Intuitive way/In paper In Appendix/Code

Shen, Y., Lin, Z., Huang, C.W. and Courville, A. Neural language
modeling by jointly learning syntax and lexicon. In ICLR, 2018.



Combining Both Worlds
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Imperfect step-by-step
\ target parsing labels
obtained by soft parser

w1 w2 w3 W4y

e Step1: Step-by-step learning from PRPN

e Step2: Policy improvement by ST-Gumbel

Bowen Li, Lili Mou, Frank Keller. An imitation learning approach to
unsupervised parsing. In ACL, 2019.



Results

w/0 Punctuation w/ Punctuation

Model Mean F' Self-agreement RB-agreement | Mean F'  Self-agreement RB-agreement
Left-Branching 20.7 - - 18.9 - -
Right-Branching 58.5 - - 18.5 - -
Balanced-Tree 39.5 - - 22.0 - -
ST-Gumbel 36.4 57.0 33.8 21.9 56.8 38.1
PRPN 46.0 48.9 51.2 51.6 65.0 27.4
Imitation (SbS only) 45.9 49.5 62.2 52.0 70.8 20.6
Imitation (SbS + refine) | 53.37 58.2 64.9 53.71 67.4 21.1

e Qur results show

- Language modeling is good, but semantic oriented tasks also help

- ST-Gumbel works if meaningful initialized

Bowen Li, Lili Mou, Frank Keller. An imitation learning approach to
unsupervised parsing. In ACL, 2019.



Summary

MLE maximize log ( ZZP(Z)P(Y\ Z, 9))

RL maximize — R(Y (Z))
ZNPo(Z)
SO‘;'{“W?:)'( maximize = J(Y( z9(€) ))
e€p(€)

Attention maximize  J(Y(E,., ,[z]) t
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